Электронная библиотека
Библиотека .орг.уа

Бизнес литература
Детективы. Боевики. Триллеры
Детская литература
Наука. Техника. Медицина
Религия. Оккультизм. Эзотерика
Фантастика. Фэнтези
Художественная литература

Поиск по сайту
Фантастика. Фэнтези
   Зарубежная фантастика
      Bruce Sterling. The hacker crackdown -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  -
letely. During the nine long hours of frantic effort that it took to restore service, some seventy million telephone calls went uncompleted. Losses of service, known as "outages" in the telco trade, are a known and accepted hazard of the telephone business. Hurricanes hit, and phone cables get snapped by the thousands. Earthquakes wrench through buried fiber-optic lines. Switching stations catch fire and burn to the ground. These things do happen. There are contingency plans for them, and decades of experience in dealing with them. But the Crash of January 15 was unprecedented. It was unbelievably huge, and it occurred for no apparent physical reason. The crash started on a Monday afternoon in a single switching-station in Manhattan. But, unlike any merely physical damage, it spread and spread. Station after station across America collapsed in a chain reaction, until fully half of AT&T's network had gone haywire and the remaining half was hard-put to handle the overflow. Within nine hours, AT&T software engineers more or less understood what had caused the crash. ъeplicating the problem exactly, poring over software line by line, took them a couple of weeks. But because it was hard to understand technically, the full truth of the matter and its implications were not widely and thoroughly aired and explained. The root cause of the crash remained obscure, surrounded by rumor and fear. The crash was a grave corporate embarrassment. The "culprit" was a bug in AT&T's own software -- not the sort of admission the telecommunications giant wanted to make, especially in the face of increasing competition. Still, the truth *was* told, in the baffling technical terms necessary to explain it. Somehow the explanation failed to persuade American law enforcement officials and even telephone corporate security personnel. These people were not technical experts or software wizards, and they had their own suspicions about the cause of this disaster. The police and telco security had important sources of information denied to mere software engineers. They had informants in the computer underground and years of experience in dealing with high-tech rascality that seemed to grow ever more sophisticated. For years they had been expecting a direct and savage attack against the American national telephone system. And with the Crash of January 15 -- the first month of a new, high-tech decade -- their predictions, fears, and suspicions seemed at last to have entered the real world. A world where the telephone system had not merely crashed, but, quite likely, *been* crashed -- by "hackers." The crash created a large dark cloud of suspicion that would color certain people's assumptions and actions for months. The fact that it took place in the realm of software was suspicious on its face. The fact that it occurred on Martin Luther King Day, still the most politically touchy of American holidays, made it more suspicious yet. The Crash of January 15 gave the Hacker Crackdown its sense of edge and its sweaty urgency. It made people, powerful people in positions of public authority, willing to believe the worst. And, most fatally, it helped to give investigators a willingness to take extreme measures and the determination to preserve almost total secrecy. An obscure software fault in an aging switching system in New York was to lead to a chain reaction of legal and constitutional trouble all across the country. # Like the crash in the telephone system, this chain reaction was ready and waiting to happen. During the 1980s, the American legal system was extensively patched to deal with the novel issues of computer crime. There was, for instance, the Electronic Communications Privacy Act of 1986 (eloquently described as "a stinking mess" by a prominent law enforcement official). And there was the draconian Computer Fraud and Abuse Act of 1986, passed unanimously by the United States Senate, which later would reveal a large number of flaws. Extensive, well- meant efforts had been made to keep the legal system up to date. But in the day-to-day grind of the real world, even the most elegant software tends to crumble and suddenly reveal its hidden bugs. Like the advancing telephone system, the American legal system was certainly not ruined by its temporary crash; but for those caught under the weight of the collapsing system, life became a series of blackouts and anomalies. In order to understand why these weird events occurred, both in the world of technology and in the world of law, it's not enough to understand the merely technical problems. We will get to those; but first and foremost, we must try to understand the telephone, and the business of telephones, and the community of human beings that telephones have created. # Technologies have life cycles, like cities do, like institutions do, like laws and governments do. The first stage of any technology is the Question Mark, often known as the "Golden Vaporware" stage. At this early point, the technology is only a phantom, a mere gleam in the inventor's eye. One such inventor was a speech teacher and electrical tinkerer named Alexander Graham Bell. Bell's early inventions, while ingenious, failed to move the world. In 1863, the teenage Bell and his brother Melville made an artificial talking mechanism out of wood, rubber, gutta-percha, and tin. This weird device had a rubber-covered "tongue" made of movable wooden segments, with vibrating rubber "vocal cords," and rubber "lips" and "cheeks." While Melville puffed a bellows into a tin tube, imitating the lungs, young Alec Bell would manipulate the "lips," "teeth," and "tongue," causing the thing to emit high-pitched falsetto gibberish. Another would-be technical breakthrough was the Bell "phonautograph" of 1874, actually made out of a human cadaver's ear. Clamped into place on a tripod, this grisly gadget drew sound-wave images on smoked glass through a thin straw glued to its vibrating earbones. By 1875, Bell had learned to produce audible sounds - - ugly shrieks and squawks -- by using magnets, diaphragms, and electrical current. Most "Golden Vaporware" technologies go nowhere. But the second stage of technology is the ъising Star, or, the "Goofy Prototype," stage. The telephone, Bell's most ambitious gadget yet, reached this stage on March 10, 1876. On that great day, Alexander Graham Bell became the first person to transmit intelligible human speech electrically. As it happened, young Professor Bell, industriously tinkering in his Boston lab, had spattered his trousers with acid. His assistant, Mr. Watson, heard his cry for help -- over Bell's experimental audio- telegraph. This was an event without precedent. Technologies in their "Goofy Prototype" stage rarely work very well. They're experimental, and therefore half- baked and rather frazzled. The prototype may be attractive and novel, and it does look as if it ought to be good for something-or-other. But nobody, including the inventor, is quite sure what. Inventors, and speculators, and pundits may have very firm ideas about its potential use, but those ideas are often very wrong. The natural habitat of the Goofy Prototype is in trade shows and in the popular press. Infant technologies need publicity and investment money like a tottering calf need milk. This was very true of Bell's machine. To raise research and development money, Bell toured with his device as a stage attraction. Contemporary press reports of the stage debut of the telephone showed pleased astonishment mixed with considerable dread. Bell's stage telephone was a large wooden box with a crude speaker-nozzle, the whole contraption about the size and shape of an overgrown Brownie camera. Its buzzing steel soundplate, pumped up by powerful electromagnets, was loud enough to fill an auditorium. Bell's assistant Mr. Watson, who could manage on the keyboards fairly well, kicked in by playing the organ from distant rooms, and, later, distant cities. This feat was considered marvellous, but very eerie indeed. Bell's original notion for the telephone, an idea promoted for a couple of years, was that it would become a mass medium. We might recognize Bell's idea today as something close to modern "cable radio." Telephones at a central source would transmit music, Sunday sermons, and important public speeches to a paying network of wired-up subscribers. At the time, most people thought this notion made good sense. In fact, Bell's idea was workable. In Hungary, this philosophy of the telephone was successfully put into everyday practice. In Budapest, for decades, from 1893 until after World War I, there was a government-run information service called "Telefon Hirmondo=." Hirmondo= was a centralized source of news and entertainment and culture, including stock reports, plays, concerts, and novels read aloud. At certain hours of the day, the phone would ring, you would plug in a loudspeaker for the use of the family, and Telefon Hirmondo= would be on the air -- or rather, on the phone. Hirmondo= is dead tech today, but Hirmondo= might be considered a spiritual ancestor of the modern telephone-accessed computer data services, such as CompuServe, GEnie or Prodigy. The principle behind Hirmondo= is also not too far from computer "bulletin- board systems" or BBS's, which arrived in the late 1970s, spread rapidly across America, and will figure largely in this book. We are used to using telephones for individual person-to-person speech, because we are used to the Bell system. But this was just one possibility among many. Communication networks are very flexible and protean, especially when their hardware becomes sufficiently advanced. They can be put to all kinds of uses. And they have been -- and they will be. Bell's telephone was bound for glory, but this was a combination of political decisions, canny infighting in court, inspired industrial leadership, receptive local conditions and outright good luck. Much the same is true of communications systems today. As Bell and his backers struggled to install their newfangled system in the real world of nineteenth-century New England, they had to fight against skepticism and industrial rivalry. There was already a strong electrical communications network present in America: the telegraph. The head of the Western Union telegraph system dismissed Bell's prototype as "an electrical toy" and refused to buy the rights to Bell's patent. The telephone, it seemed, might be all right as a parlor entertainment -- but not for serious business. Telegrams, unlike mere telephones, left a permanent physical record of their messages. Telegrams, unlike telephones, could be answered whenever the recipient had time and convenience. And the telegram had a much longer distance-range than Bell's early telephone. These factors made telegraphy seem a much more sound and businesslike technology -- at least to some. The telegraph system was huge, and well-entrenched. In 1876, the United States had 214,000 miles of telegraph wire, and 8500 telegraph offices. There were specialized telegraphs for businesses and stock traders, government, police and fire departments. And Bell's "toy" was best known as a stage-magic musical device. The third stage of technology is known as the "Cash Cow" stage. In the "cash cow" stage, a technology finds its place in the world, and matures, and becomes settled and productive. After a year or so, Alexander Graham Bell and his capitalist backers concluded that eerie music piped from nineteenth-century cyberspace was not the real selling-point of his invention. Instead, the telephone was about speech -- individual, personal speech, the human voice, human conversation and human interaction. The telephone was not to be managed from any centralized broadcast center. It was to be a personal, intimate technology. When you picked up a telephone, you were not absorbing the cold output of a machine -- you were speaking to another human being. Once people realized this, their instinctive dread of the telephone as an eerie, unnatural device, swiftly vanished. A "telephone call" was not a "call" from a "telephone" itself, but a call from another human being, someone you would generally know and recognize. The real point was not what the machine could do for you (or to you), but what you yourself, a person and citizen, could do *through* the machine. This decision on the part of the young Bell Company was absolutely vital. The first telephone networks went up around Boston - - mostly among the technically curious and the well-to-do (much the same segment of the American populace that, a hundred years later, would be buying personal computers). Entrenched backers of the telegraph continued to scoff. But in January 1878, a disaster made the telephone famous. A train crashed in Tarriffville, Connecticut. Forward-looking doctors in the nearby city of Hartford had had Bell's "speaking telephone" installed. An alert local druggist was able to telephone an entire community of local doctors, who rushed to the site to give aid. The disaster, as disasters do, aroused intense press coverage. The phone had proven its usefulness in the real world. After Tarriffville, the telephone network spread like crabgrass. By 1890 it was all over New England. By '93, out to Chicago. By '97, into Minnesota, Nebraska and Texas. By 1904 it was all over the continent. The telephone had become a mature technology. Professor Bell (now generally known as "Dr. Bell" despite his lack of a formal degree) became quite wealthy. He lost interest in the tedious day-to-day business muddle of the booming telephone network, and gratefully returned his attention to creatively hacking-around in his various laboratories, which were now much larger, better- ventilated, and gratifyingly better-equipped. Bell was never to have another great inventive success, though his speculations and prototypes anticipated fiber-optic transmission, manned flight, sonar, hydrofoil ships, tetrahedral construction, and Montessori education. The "decibel," the standard scientific measure of sound intensity, was named after Bell. Not all Bell's vaporware notions were inspired. He was fascinated by human eugenics. He also spent many years developing a weird personal system of astrophysics in which gravity did not exist. Bell was a definite eccentric. He was something of a hypochondriac, and throughout his life he habitually stayed up until four A.M., refusing to rise before noon. But Bell had accomplished a great feat; he was an idol of millions and his influence, wealth, and great personal charm, combined with his eccentricity, made him something of a loose cannon on deck. Bell maintained a thriving scientific salon in his winter mansion in Washington, D.C., which gave him considerable backstage influence in governmental and scientific circles. He was a major financial backer of the the magazines *Science* and *National Geographic,* both still flourishing today as important organs of the American scientific establishment. Bell's companion Thomas Watson, similarly wealthy and similarly odd, became the ardent political disciple of a 19th-century science-fiction writer and would-be social reformer, Edward Bellamy. Watson also trod the boards briefly as a Shakespearian actor. There would never be another Alexander Graham Bell, but in years to come there would be surprising numbers of people like him. Bell was a prototype of the high-tech entrepreneur. High-tech entrepreneurs will play a very prominent role in this book: not merely as technicians and businessmen, but as pioneers of the technical frontier, who can carry the power and prestige they derive from high-technology into the political and social arena. Like later entrepreneurs, Bell was fierce in defense of his own technological territory. As the telephone began to flourish, Bell was soon involved in violent lawsuits in the defense of his patents. Bell's Boston lawyers were excellent, however, and Bell himself, as an elecution teacher and gifted public speaker, was a devastatingly effective legal witness. In the eighteen years of Bell's patents, the Bell company was involved in six hundred separate lawsuits. The legal records printed filled 149 volumes. The Bell Company won every single suit. After Bell's exclusive patents expired, rival telephone companies sprang up all over America. Bell's company, American Bell Telephone, was soon in deep trouble. In 1907, American Bell Telephone fell into the hands of the rather sinister J.P. Morgan financial cartel, robber-baron speculators who dominated Wall Street. At this point, history might have taken a different turn. American might well have been served forever by a patchwork of locally owned telephone companies. Many state politicians and local businessmen considered this an excellent solution. But the new Bell holding company, American Telephone and Telegraph or AT&T, put in a new man at the helm, a visionary industrialist named Theodore Vail. Vail, a former Post Office manager, understood large organizations and had an innate feeling for the nature of large-scale communications. Vail quickly saw to it that AT&T seized the technological edge once again. The Pupin and Campbell "loading coil," and the deForest "audion," are both extinct technology today, but in 1913 they gave Vail's company the best *long-distance* lines ever built. By controlling long-distance -- the links between, and over, and above the smaller local phone companies -- AT&T swiftly gained the whip-hand over them, and was soon devouring them right and left. Vail plowed the profits back into research and development, starting the Bell tradition of huge-scale and brilliant industrial research. Technically and financially, AT&T gradually steamrollered the opposition. Independent telephone companies never became entirely extinct, and hundreds of them flourish today. But Vail's AT&T became the supreme communications company. At one point, Vail's AT&T bought Western Union itself, the very company that had derided Bell's telephone as a "toy." Vail thoroughly reformed Western Union's hidebound business along his modern principles; but when the federal government grew anxious at this centralization of power, Vail politely gave Western Union back. This centralizing process was not unique. Very similar events had happened in American steel, oil, and railroads. But AT&T, unlike the other companies, was to remain supreme. The monopoly robber-barons of those other industries were humbled and shattered by government trust-busting. Vail, the former Post Office official, was quite willing to accommodate the US government; in fact he would forge an active alliance with it. AT&T would become almost a wing of the American government, almost another Post Office -- though not quite. AT&T would willingly submit to federal regulation, but in return, it would use the government's regulators as its own police, who would keep out competitors and assu

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  -

Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору Rambler's Top100 Яндекс цитирования