Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Наука. Техника. Медицина
   Наука
      Пышнов Владимир. Из истории летательных аппаратов -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  -
е о средствах управления этим самолетом и о его возможностях маневрирования. "НА ВОЕННОМ САМОЛЕТЕ "НЬЮПОР-4"" Закончив обучение на самолете "Фарман-4", П. Н. Нестеров был направлен в Варшавскую авиационную школу для переучивания на монопланах "Ньюпор-4", которые в 1912 г. вместе с самолетами "Фарман-16", состояли на вооружении русской военной авиации. В авиационной литературе того времени можно было найти много высказываний на тему: "Моноплан или биплан?" Соревнование моноплана и биплана продолжалось до 1930-- 1935 гг. и закончилось окончательной победой моноплана. В период 1909-- 1913 гг. опыт самолетостроения показывал, что монопланы получаются несколько более быстроходными, а бипланы -- более грузоподъемными. Это определялось тем, что бипланную расчалочную ферму можно было сделать со значительно большим размахом, чем расчалочную монопланную. Наиболее убедительно это было продемонстрировано на самолете "Илья Муромец", который имел размах 37 м. Сделать моноплан с таким размахом в те времена не представлялось возможным. С началом первой мировой войны 1914-1918 гг. расчалочные монопланы были почти совсем изъяты из авиации как совершенно неудовлетворительные по обзору. Оставался только один моноплан -- Моран "Парасоль" (т. е. "Зонт"), у которого расчалочное крыло было поднято над фюзеляжем и благодаря этому был получен прекрасный обзор вниз. Казалось, что в отношении обзора была лучше схема с толкающим винтом, когда экипаж размещался в гондоле, расположенной в самой передней части самолета. Таковы были самолеты "Фарман-16", -22, -27 и -30 и Вуазен L.A.S, которые состояли на вооружении русской авиации вплоть до гражданской войны. Однако "толкающие" бипланы были хуже в аэродинамическом отношении, и их задняя полусфера оставалась незащищенной от атак истребителей противника. Встретив противника в воздухе, эти самолеты были вынуждены переходить на крутые виражи, стараясь повернуться к нему носом, и это иногда удавалось. Наибольшее развитие получили "тянущие" фюзеляжные бипланы, у которых гармонично сочетались конструктивные преимущества с удовлетворительным обзором земли и воздуха и была обеспечена защита передней и задней полусфер. Маленькие фюзеляжные бипланы оказались аэродинамически и в весовом отношении более выгодными, чем расчалочные монопланы типа "Ньюпор-4" или "Моран-G", о которых мы еще расскажем далее. С улучшением аэродинамики и переходом к свободнонесущим конструкциям весовые преимущества бипланов были утрачены. При больших размахах крыльев свободнонесущий моноплан оказался более легким. Возможность уменьшить ширину крыла, снабженного посадочной механизацией, и опустить свободнонесущее крыло вниз дала преимущества малым монопланам-истребителям. Эта схема являлась основной в период второй мировой войны. Интересно, что с переходом на реактивные двигатели опять стала применяться "толкающая" схема, но она логично увязывалась с хорошей аэродинамической схемой. Один из недостатков толкающей схемы остался -- это сложность обеспечения удовлетворительной центровки самолета, так как вес двигателя в этом случае нужно компенсировать другими весами, выдвинутыми далеко вперед, и самолеты стали длинноносыми. При тянущей схеме, когда двигатель находится впереди, топливо и грузы удобно размещаются в районе центра тяжести самолета. После такого отступления мы вновь вернемся к временам П. Н. Нестерова, когда расчалочный моноплан привлекал летчиков своей скоростью и маневренностью. Опишем сначала самолет "Ньюпор-4", на котором П. Н. Нестерову удалось достигнуть замечательных результатов по осуществлению высшего пилотажа, и затем -- "Моран-G", на который П. Н. Нестеров перешел в 1914 г. и, летая на котором, он погиб в воздушном бою. Самолет "Ньюпор-4" был французской конструкции; он был закуплен русским военным ведомством во Франции в 1911-- 1912 гг. и строился на русских заводах вплоть до конца 1915 г. В печати того времени можно найти упреки в адрес военного ведомства за неудачный выбор этого типа самолета. С этим нельзя в полной мере согласиться; конструкции в тот период так быстро менялись, что через один-два года они уже устаревали. В 1911 г. самолет "Ньюпор-4" был, несомненно, передовым по своей аэродинамике и летным характеристикам и, безусловно, превосходил широко распространенные самолеты того времени -- моноплан "Блерио-11" и биплан "Фарман-4". Однако в 1913 г. самолет "Ньюпор-4" уже устарел и его пора было заменять, но это не было сделано, пока начавшаяся в 1914 г. война не выявила его полную непригодность для каких-либо военных целей. Но положительные качества самолета проявились в дальних перелетах; в перелете Севастополь -- Петербург в 1912 г., осуществленном летчиками В. В. Дыбовским и Д. Г. Андреади, и в перелете по маршруту Киев-- Гатчина, осуществленном П. Н. Нестеровым в 1914 г. всего за один день. Запас мощности и высокая прочность самолета "Ньюпор-4" позволили П. Н. Нестерову выполнять глубокие виражи и петлю, что являлось серьезным испытанием для самолета. Рис. 6. Самолет "Ньюпор-4" (1911 г.) с ротативным двигателем "Гном" мощностью 70 л. с. Площадь крыльев с подфюзеляжной частью 21,5 м2; вес пустого самолета около 450 кГ; полетный вес с одним летчиком 600 кГ. Крупным недостатком самолета-моноплана "Ньюпор-4" был очень плохой обзор земли, что было общим недостатком монопланов того времени. Как видно из схемы самолета (рис. 6), голова летчика находилась невысоко над серединой крыла (ширина крыла 2,5 м). Другим недостатком, тоже общим для монопланов того времени, было тяжелое поперечное управление, осуществлявшееся путем искривления крыльев. Для этой цели тросы идущие к переднему лонжерону, были закреплены жестко, а тросы, идущие от заднего лонжерона, соединялись через рычажки или ролики и могли перемещаться так, что, если конец левого заднего лонжерона опускался, конец противоположного лонжерона поднимался. То, что управление было тяжелым, объяснялось не только деформированием конструкции при перекашивании крыла, но главным образом тем, что ось, относительно которой поворачивалось крыло, находилась на расстоянии, равном приблизительно 10% длины хорды, от передней кромки, а сама хорда имела длину около 2 м. В итоге аэродинамические шарнирные моменты были велики. Переход на элероны у монопланов произошел значительно позже. Для облегчения управления фирма "Ньюпор" применила такую систему управления, при которой искривление крыльев для управления креном выполнялось ножными педалями, а рулем направления управляли посредством боковых движений ручки. Такое управление не получило распространения, но оно затрудняло переход на этот самолет с самолетов других типов или с него на другие. Во всяком случае, подобная система управления считалась одним из основных минусов самолета. Рассматривая схему самолета, мы можем констатировать, что она напоминает схемы многих других самолетов, которые строились значительно позже и отличались от нее только некоторыми деталями. Самолет имел трапециевидное крыло умеренного сужения с удлинением около 5; киль отсутствовал, что являлось обычным для того времени; руль высоты был относительно невелик. Самолет мог бы иметь довольно высокое аэродинамическое качество, если бы его не ухудшали некоторые детали: довольно грубая носовая часть, с малым развитием выпуклых поверхностей, нужных для возникновения разрежений; большая длина тросовых расчалок и сложное шасси, когда в силовую систему входили передняя и задняя пары подкосов, а средняя пара служила только для шасси. Для амортизации служила обычная рессора, стоявшая поперек потока и совершенно не обтекаемая. При эффективном удлинении, равном приблизительно 4,6, и Сх0=0,1 аэродинамическое качество самолета было равно примерно 6. Нужно сказать, что по сравнению с самолетами того времени это было приличное качество, обеспечивающее достаточно пологий спуск при планировании и простой переход от моторного полета к планированию. Интересно, что профиль крыла был S-образный, т. е. с перегибом средней линии и примерно постоянным положением центра давления. На других самолетах обычными были профили с очень большой кривизной средней линии. В то время некоторые специалисты полагали, что постоянство центра давления улучшает продольную устойчивость. На самом деле это приводило только к некоторым прочностным преимуществам и к существенному ухудшению несущей способности крыла при больших углах атаки. Этим, может быть, объясняются имевшие место катастрофы в результате сваливания на крыло. Центровка самолета неизвестна, но нужно думать, что она была не более 40%, что для того времени можно считать довольно передней центровкой. Нейтральная центровка с зажатым рулем и без учета эффекта демпфирования составляла 42-44%. Самолет был, несомненно, устойчив по перегрузке и, вероятно, по скорости. Для того времени это было редким положительным качеством. Автору приходилось наблюдать полеты на самолетах "Ньюпор-4" в 1914-- 1915 гг. Полет выглядел спокойным и плавным, только при рулении самолет сильно раскачивался из-за малой базы колес и мягкости рессоры. При ознакомлении с конструкцией самолета сложилось впечатление, что лонжероны и тросовые расчалки имели большой запас прочности, хотя прочность, видимо, вообще не проверялась при статических испытаниях, как не проверялась и центровка. Из сказанного выше следует, что по устойчивости и прочности самолет подходил для выполнения высшего пилотажа. Катастрофы с самолетом происходили в основном в результате сваливания на крыло при потере скорости. Это можно объяснить в известной мере свойством профиля крыла -- с резким срывом обтекания. Одна катастрофа произошла при крутом спуске по прямой линии, из которого летчик, видимо, не смог вывести самолет и врезался в землю. Этот случай объясняли потерей жесткости фюзеляжа после грубых посадок в сочетании с малой эффективностью руля высоты. Известен случай поломки крыльев самолета при резком выравнивании во время посадки, когда поломались подкосы шасси, к которым крепились несущие расчалки. Видимо, в данном случае имел место производственный дефект или же было повреждено шасси при грубых посадках. Автор был свидетелем катастрофы самолета, при которой погиб летчик С. В. Гулевич осенью 1915 г. На высоте более 1000 м самолет вдруг начал быстро вращаться вокруг продольной оси и, продолжая вращаться, в состоянии пикирования дошел до земли и разбился. В то время о штопоре знали мало и умышленного штопора не делали. По характеру движения причину катастрофы можно было приписать невыходу из штопора. Однако некоторые обстоятельства говорят против этой версии. Во-первых, как это запомнил автор, фюзеляж самолета был в вертикальном положении, чего не бывает при штопоре, когда наклон фюзеляжа по отношению к вертикали составляет не менее 20о. Самолет был разрушен очень сильно, чего не бывает при штопоре самолета с малой удельной нагрузкой на крыло. Наконец, в некрологе, посвященном С. В. Гулевичу, проф. Н. Е. Жуковский указывает, что ножная педаль, при помощи которой производилось управление креном, была отъединена от трубы управления. Это могло произойти и при ударе, но если это имело место в полете в результате выпадения соединительного болтика, все происшедшее будет вполне объяснимо. В самом деле, если у самолета произойдет разъединение управления элеронами, они займут нейтральное положение, так как шарнирный момент их значительно сильнее зависит от угла отклонения, чем от изменения угла атаки крыла. Другое дело -- перекашивание крыльев, когда степень зависимости шарнирных моментов от угла перекашивания и от изменения угла атаки при движении крена одинакова, и после перекашивания крылья так и остаются в приданном им положении, а самолет, начав вращение, продолжает его. При невозможности остановить вращение самолет неизбежно будет двигаться по вертикали, так как подъемная сила будет поворачиваться вместе с крылом. Перейдем к рассмотрению летных характеристик самолета. Основной характеристикой является запас подъемной силы, т. е. отношение максимальной подъемной силы к весу. Подъемную силу определим по формуле При максимальном аэродинамическом качестве Кmах=6, N=70 л. с. и размахе крыльев l=10,6 м получим максимальную подъемную силу При нормальном полетном весе, равном 680 кГ, Ymax/G=1,47; при весе, равном 600 кГ, который, вероятно, близок к весу, имевшему место при выполнении петли П. Н. Нестеровым, Ymax/G=1,67; для пустого веса самолета G0=450 кГ величина Ymax/G0=2,2. Более простыми характеристиками служат величины, применяемые для статистики: По полученным значениям можно сделать такие выводы: по запасу подъемной силы самолет может быть отнесен к категории средненагруженных, маломаневренных самолетов. Значение KG=8,3 близко к таковому для современных винтовых самолетов; значение KGo=5,5 несколько велико и говорит о некотором перетяжелении конструкции. При весе 600 кГ величина Ymax/G=nу=1,67 позволяет маневрировать со средним значением перегрузки 1,6, например, делать длительные виражи с креном около 50о. Как известно, П. Н. Нестеров выполнял более крутые виражи; очевидно, они выполнялись со скольжением, когда наличие нагрузки на боковые стенки фюзеляжа позволяет увеличить крен, не уменьшая вертикальной составляющей от подъемной и боковых сил. На рис. 7, 8 и 9 приведены результаты поверочного аэродинамического расчета самолета "Ньюпор-4". На рис. 7 дана поляра и зависимость Су от угла атаки; в нижней части графика дан профиль крыла. На рис. 8 приведены зависимости мощностей, потребных для преодоления сопротивления, и полезных мощностей от скорости для высот 0, 1, 2 и 3 км, в условиях горизонтального полета при полетном весе 600 кГ. По пересечениям кривых получаем значения максимальных скоростей горизонтального полета; по максимальной разности мощностей получим избытки мощности DN, по которым затем можем найти вертикальные скорости Vy=75 DN /G. Рис. 7. Поляра и профиль крыла самолета "Ньюпор-4": Рис. 8. График мощностей для самолета "Ньюпор-4": сплошные линии - потребные мощности; пунктир - располагаемые мощности. На рис. 9 даны зависимости максимальной скорости Vmax от высоты; вертикальной скорости от высоты при скорости Vнаб; скорости при наборе высоты Vнаб и минимальной скорости полета Vmin. Кроме того, на графике приведены зависимости высоты от времени подъема t при скорости Vнаб. Графики даны для полетных весов 600 и 680 кГ. Рис. 9. Основные летные характеристики самолета "Ньюпор-4" при полетных весах 600 и 680 кГ При более точном расчете мы получили максимальную подъемную силу, равную 980 кГ, при скорости V=25,8 м/сек (93 км/час). При полетном весе 600 кГ это даст перегрузку ny=l,63; ее горизонтальную составляющую nгор=1,29; центростремительное ускорение jцс=12,6 м/сек2; отсюда получим радиус виража r=V2/jц.с.=53 м и время совершения полного круга t=2pr/V=13 сек. Посмотрим теперь, как должна была выглядеть петля, которую выполнил П. Н. Нестеров. Расчет петли удобно и наглядно можно выполнить исходя из энергетических принципов. Величину hк=V2/2g будем называть кинетической высотой -- она характеризует кинетическую энергию летящего самолета; при полете на минимальной скорости получим величину hк0=V2min/2g; для самолета "Ньюпор-4" при полетном весе 600 кГ, hк0=18,5 м. Таким образом, для коэффициента перегрузки nу получим одно условие по скорости: второе условие будет по прочности: nу< nу доп. Поскольку мы не знаем действительной прочности самолета, примем nу доп=3,5, что достаточно для выполнения петли. В пределах от nу=0 до nу mах мы можем произвольно выбирать значения nу, в зависимости от желаемого характера траектории; при движении по прямой мы всегда должны брать nу=соs q. Для получения минимального радиуса кривизны траектории nу=hк/hк0, но не более nу доп. Практически целесообразно выбирать такую перегрузку, при которой самолет будет обладать аэродинамическим качеством, близким к максимальному; это будет иметь место при условии Сy2 /plэ=Cх0. Значение nу н (т. е. при Cу н) можно представить в виде где hк.н -- кинетическая высота горизонтального полета при максимальном аэродинамическом качестве Для рассчитываемого случая Cун=1,15; hк.н=21,5 м. Таким образом, при выполнении криволинейного движения следует придерживаться перегрузок, определяемых условием nу= hк/21,5, но не более 3,5 и не более ny= hк/18,5. Имея значение перегрузки nу и hк, мы можем определить радиус кривизны траектории в вертикальной плоскости: Это будет первым уравнением для расчета петли. Второе уравнение позволит рассчитывать значение hк. Для этой цели мы используем выражение, связывающее коэффициент продольной перегрузки с изменением уровня энергии самолета: Значение nх может быть раскрыто как функция hк и nу; для Р/G мы подобрали линейную зависимость от hк, которая справедлива в нужном диапазоне скоростей P/G=0,28-- 0,0016hк. Для Q/G получим Подставив получим В итоге, для полета с работающим двигателем будем иметь При полете с выключенным двигателем мы отбрасываем тягу винта и добавляем его сопротивление, что дает DCx0=0,03, и тогда получим Вообще говоря, можно было бы вместо формул для nх дать график. Таким образом, мы имеем два уравнения: одно для радиуса кривизны -- простое, и для уровня энергии -- дифференциальное. Кроме того, вспомогательные связи: hэ=h+hк; ds= rdq; dh=ds sinq. За текущую координату может быть выбран путь s или угол поворота касательной к траектории q. Производя расчет движения, пользуясь дифференциальным уравнением, выбираем шаг расчета Ds или Dq; первый -- на прямолинейных участках, а на криволинейных участках удобнее брать Dq, так как мы всегда будем знать среднее значение угла q. Численное интегрирование усложняется необходимостью делать последовательные приближения или брать очень малые значения шага. Работа упрощается, если возможна экстраполяция средних значений величин, входящих в формулы. Приняв некоторый шаг для угла наклона траектории Dq, мы получим следующие формулы: В очередном интервале расчета мы знаем q, выбираем nу и вынуждены экстраполировать величину hк. ср; если после выполнения расчета hк. ср окажется иным, мы должны повторить расчет. Чтобы улучшить экстраполяцию, следует в процессе расчета строить графики hэ и h пo s и рядом с ними траекторию так, чтобы масштабы были одинаковы. На рис. 10 и 11 показаны результаты расчета петли для самолета "Ньюпор-4" применительно к условиям выполнения ее П. Н. Нестеровым. За исходные условия был взят горизонтальный полет на высоте 900 м при скорости 90 км/час, что давало hк= 32 и начальный уровень энергии 932 м. Затем происходил переход в пикирование

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору