Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Наука. Техника. Медицина
   Наука
      Пышнов Владимир. Из истории летательных аппаратов -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  -
иченности проводимых экспериментов с моделями в аэродинамических трубах. В периодической литературе того времени можно было встретить много статей, в которых обсуждались различные проблемы самолетостроения и особенно вопросы, связанные с увеличением скоростей и высот полета, а также грузоподъемности и устойчивости самолетов. Наиболее интересные в научном отношении работы печатались в журналах: русском -- "Воздухоплаватель", французском "L'Aerophille" и немецком -- "Z. F. М". Создание более грузоподъемных самолетов было связано с увеличением их размеров и повышением мощности двигателей. Проблемы масштаба сооружений и машин были уже изучены более глубоко применительно к мостам, архитектурным сооружениями и кораблям. Некоторые соображения, взятые из этих областей, были использованы при изучении проблемы создания грузоподъемных летательных аппаратов. В журнале "Воздухоплаватель" за 1911 г. была помещена статья известного летчика и инженера Н. А. Яцука "О максимальной величине грузоподъемности аэроплана". В этой статье Н. А. Яцук ссылается на работу Д. И. Менделеева "О наивыгоднейших размерах и предельной величине летающих машин тяжелее воздуха", выполненную еще тогда, когда никакого опыта самолетостроения не было. Д. И. Менделеев рассматривал задачу об изменении характеристик летательных аппаратов определенной схемы при увеличении геометрических размеров аппарата в n раз. Развивая мысли Д. И. Менделеева, Н. А. Яцук берет в качестве основного условия постоянство соотношения мощности двигателя и площади крыльев, что для подобных форм эквивалентно постоянству скорости полета. Тогда развиваемая подъемная сила будет пропорциональна площади, т. е. n2; вес двигателя, приходящийся на 1 л. с., принимался постоянным, и тогда вес двигателей Gдв тоже оказывался пропорциональным n2. Что же касается веса конструкции Gкон, то она принималась пропорциональной кубу масштаба, т. е. величине n3. Такое предположение справедливо при условии полного подобия конструкции и постоянства напряжений, вызываемых весом грузов, т. е. двигателей, топлива и полезной нагрузки. Поставив такое условие, Н. А. Яцук оговаривается, однако, что оно может оказаться неправильным. Из поставленных условий вытекает такое выражение для величины полезной нагрузки: Эта формула дает быстрый начальный рост Gпол по мере увеличения n, а затем, после достижения некоторого максимума, следует быстрое уменьшение Gпол в результате резкого увеличения веса конструкции. Изобразив эту зависимость графически (рис. 1), мы можем видеть, что изменение параметра С и показателя степени при весе конструкции m, будет вызывать очень значительное изменение как максимальной полезной нагрузки, так и соответствующего ей масштаба летательного аппарата. Понимая недостоверность знаний об истинных значениях величин С и m, авторы исследований, естественно, бывали осторожны в своих выводах. На графике, приведенном на рис. 1, были приняты различные зависимости весов конструкции и двигателей от масштабного множителя n. В качестве исходных при n=1 были приняты значения Gдв0/G = 0,25 и Gкон0/G=0,3; тогда Gпол0/G =0,45. На графике по оси ординат показано относительное изменение полезной нагрузки, т. е. величина Gпол/Gпол 0. Кривая 1 соответствует росту веса двигателя по n2 и веса конструкции по n3. Рис. 1. Относительное изменение грузоподъемности самолета при изменении его размеров для разных законов зависимости веса конструкции от размеров самолета. В этом случае максимальная полезная нагрузка будет при n=1,67, а при n=2,5 полезная нагрузка становится равной нулю вследствие резкого возрастания веса конструкции. Кривая 2 относится к случаю, когда вес конструкции пропорционален n в степени 8/3, т. е. немного ниже кубичной. Как видно, полезная нагрузка самолета в этом случае значительно возросла и имеет максимум при n=2,5. Кривая 3 была построена при весе конструкции, пропорциональном n в степени 5/2, и это дало увеличение полезной нагрузки в 5,5 раза по сравнению с исходным значением. Наконец, кривая 4 построена при условии, что вес конструкции меняется тоже пропорционально n5/2, но, кроме того, с ростом n запас мощности понижается так, что вес двигателей будет пропорционален n в степени 5/3. В этом случае максимальная полезная нагрузка оказалась увеличенной более чем в 10 раз по сравнению с исходной при n=1. Вес самолета будет увеличен в (5,5)2, т. е. в 30 раз; относительные параметры будут такими: Gдв/G=0,14; Gкон/G=0,7; Gпол/G=0,16. В последнем случае, хотя и был достигнут максимум полезной нагрузки, но самолет оказался очень неэкономичным из-за относительной малости полезной нагрузки. Мы привели рис. 1, чтобы показать, какой эффект может дать изменение показателей степени. В той же работе Н. А. Яцук проводит исследование для случая увеличения грузоподъемности самолета при сохранении его размеров, но при увеличении скорости в m раз. В этой задаче он ссылается на французского ученого А. Сее, который опубликовал свою работу в журнале "L'Aerophille" от 15 января 1910 г. Александр Сее был выдающимся ученым того времени, работавшим в области летательных аппаратов. Им было опубликовано много интересных работ в журналах "L'Aerophille" и "La Technique Aeronautique", и они, несомненно, оказали важное влияние на развитие авиационных наук. Задача о зависимости грузоподъемности от скорости формально не отличается от рассмотренной выше, но только по кубичному закону меняется не вес конструкции, а вес двигателей, так как с ростом скорости мощность должна меняться по кубу скорости, а вес двигателей принимается пропорциональным мощности в первой степени. Можно было бы указать, что это тоже очень грубый расчет, так как с ростом мощности, т. е. при увеличении размеров или числа двигателей, аэродинамическое подобие не соблюдается и при увеличении скорости как мощность, так и вес двигателей будут увеличиваться более сильно, чем по кубичной степени. Если исходить из постоянства значений G/N и G/S и принять G/N=10 и G/S=15-30, то мы получим такие выражения для полетного веса и площади крыльев: Так, при N = 50 л. с. вес самолета будет равен ~500 кГ и площадь его крыльев S -- от 16 до 32 м2. Эти значения довольно близки к характеристикам многих самолетов 1910-- 1912 гг. Исследуя условия полета, аэродинамики пришли к выводу, что постоянство параметров G/S и G/N не является необходимым. Из выражения для мощности, потребной для полета на подобных режимах при подобных аэродинамических формах, следует, что необходимо иметь постоянство величины Впоследствии эта величина именовалась числом Эверлинга, характеризующим аэродинамическое совершенство самолета. Это вытекает из преобразований формулы для величины мощности, потребной для горизонтального полета, равной: где К -- аэродинамическое качество и h -- коэффициент полезного действия винта. Подставляя выражение для скорости, получим Для некоторого самолета периода 1911 -- 1912 гг. G/S = 25, G/N=10; тогда Здесь мощность взята полная, а не потребная для горизонтального полета, т. е. с запасом. Поскольку запас мощности примерно двухкратный, для максимальной подъемной силы получим Напоминаем, что данная величина характеризует аэродинамику самолетов указанных лет. Определяя полетный вес, получим следующие формулы: Эти выражения наглядно показывают, как влияет на полетный вес изменение мощности двигателей и площади крыльев. Однако интерес представляет полезная грузоподъемность, т. е. разность полетного веса и суммы весов конструкции и двигателей. В общем случае полетный вес самолета можно представить формулой Отношение Nmax/N характеризует запас мощности, который самолет должен иметь при полете на малой высоте. Этот запас выбирается в зависимости от назначения самолета и желаемой высоты потолка. Как минимум, запас мощности бывает около 2; средний запас мощности равен примерно 3, а у маневренных самолетов его доводят до 5-6. У самолета определенной аэродинамической схемы при некотором наивыгоднейшем угле атаки aн аэродинамическое качество максимально, а максимум величины Cу/Cх2/3 соответствует экономическому углу атаки aэ, который примерно в 1,5-1,7 раза больше наивыгоднейшего. Хорошо известно, как сильно было повышено аэродинамическое качество самолетов в процессе их развития. Аналогичным образом возросла и величина Cу/Cх2/3. Аэродинамический фактор явился очень эффективным средством увеличения грузоподъемности самолетов. В 1921 г. была опубликована работа научного сотрудника Центрального Аэрогидродинамического Института, инженера-летчика, В. Л. Моисеенко "Предельные размеры самолетов" (Отдел военной литературы при РВСР, Научная редакция воздушного флота). В первой части работы В. Л. Моисеенко почти повторяет расчеты Н. А. Яцука, но за основной параметр он принимает не отвлеченный фактор масштаба, а мощность двигателей N. Для веса конструкции была принята зависимость от мощности в степени 3/2, что равноценно кубичной степени по фактору масштаба п. В. Л. Моисеенко не ищет оптимальный по грузоподъемности самолет, а просто проверяет конкретные самолеты с точки зрения целесообразности увеличения их размеров и мощности двигателей. В этой части работы В. Л. Моисеенко в сущности показывает, что практически созданные самолеты имеют параметры, близкие к оптимальным. Как исключение, приводится самолет "Илья Муромец", который, по выводам В. Л. Моисеенко, чрезмерно велик. Во второй части своей работы В. Л. Моисеенко рассматривает вопрос об оптимальных размерах самолета в более широком плане, используя для веса конструкции формулу инженера-механика (впоследствии академика) Б. Н. Юрьева. Мы привели работу В. Л. Моисеенко потому, что она отражает взгляды, на возможность создания грузоподъемных самолетов в те годы, когда уже был опыт строительства самолетов "Илья Муромец" и других самолетов, созданных в период первой мировой войны, но еще не получила развития теория индуктивного сопротивления Прандтля, которая изменила взгляды теоретиков и практиков на условия получения большой подъемной силы. Посмотрим, как решали проблему повышения грузоподъемности самолетов конструкторы-практики. На многочисленных авиационных состязаниях и конкурсах самолетов значительное место уделялось достижениям по грузоподъемности, и конструкторы, естественно, задумывались над тем, какими мероприятиями ее можно повысить. Простота конструкции самолетов того времени, примитивность применяемых расчетов, отсутствие каких-либо испытаний на прочность и упрощенная проверка центровки позволяли быстро строить новые самолеты. Очень распространены были и модификации уже готовых самолетов, полученные путем перестройки отдельных их частей. Преуспевающие фирмы создавали по 2-- 3 типа и более самолетов в год. В период 1910-- 1920 гг. конструкторы самолетов руководствовались в своей работе некоторыми теоретическими соображениями, но больше экспериментировали интуитивно, стараясь улучшить свои самолеты. Многие эксперименты оказывались неудачными, но некоторые из них дали положительный эффект. Объяснить причину удачи или неудачи не всегда могли, хотя, естественно, пытались это сделать. Подражательство у конструкторов было так сильно развито, что трудно установить, кто первый применил то или иное удачное нововведение. Как мы уже указывали, увеличение площади крыльев позволяет увеличить подъемную силу, хотя и в слабой степени. В формулу для G площадь S входит под кубичным корнем. Однако конструкторы-практики обратили внимание на то, что увеличение размаха дает значительно лучший эффект, чем увеличение ширины крыла. Это можно наглядно видеть по развитию самолетов фирмы "Фарман". Так, если самолет "Фарман-4" имел размах крыльев 10,5 м, то затем фирма стала наращивать размах верхнего крыла и постепенно перешла к схеме биплана с размахом верхнего крыла, значительно большим, чем размах нижнего. Самолет "Фарман-16" (1912 г.) имел размах крыльев 13,8 м, а "Фарман-22" (1913 г.) -- 15,6 м. Самолеты "Фарман-16" и "Фарман-22" были совершенно подобны, с одинаковыми гондолами экипажа, одинаковой шириной крыльев, но только размах верхнего крыла у самолета "Фарман-22" был увеличен. Оба самолета применялись в России, и автор помнит высказывания летчиков о том, что "Фарман-22" планирует значительно лучше, чем "Фарман-16". Это говорило о более высоком аэродинамическом качестве первого самолета. Соответственно и грузоподъемность его была выше, хотя этому способствовал и более мощный двигатель. К конструкторам, которые осознали выгоду большого размаха крыльев, нужно отнести прежде всего И. И. Сикорского. Если в 1910 г. он строил самолеты с размахом крыльев 10 м, то самолет С-10 (1912 г.), который на конкурсе военных самолетов показал наибольшую грузоподъемность, имел размах крыльев около 16 м. Важно отметить, что как у самолетов "Фарман", так и у самолетов И. И. Сикорского, несмотря на увеличение размаха, ширина крыльев не увеличивалась. Однако самый решительный шаг в сторону увеличения размаха крыльев был сделан И. И. Сикорским в 1913 г., когда он построил сначала самолет "Русский Витязь" ("Гранд") с размахом крыльев 27 м, а затем самолет "Илья Муромец" с размахом 34 м (по некоторым сведениям -- 37 м). И. И. Сикорский как инженер хорошо понимал, что увеличение размаха в 2-- 2,5 раза по сравнению с размахом, типичным для самолетов того времени, поведет к большому утяжелению конструкции и что увеличение площади крыла путем его уширения не вызвало бы такого утяжеления. Однако он выбрал путь увеличения размаха. Некоторые зарубежные конструкторы того времени -- П. Шмидт, Р. Кодрон, Л. Бреге -- доводили размах крыльев до 17-- 17,5 м, но это несравнимо с размахом крыльев самолетов И. И. Сикорского. Автор не помнит, чтобы в каких-либо теоретических работах того времени рекомендовалось столь значительное увеличение размаха. Мы уже указали, что В. Л. Моисеенко в 1921 г. сомневался в выгодности большого размаха. Подробный аэродинамический анализ самолетов "Русский Витязь" и "Илья Муромец" мы приведем далее. Параметры самолета "Илья Муромец" были выбраны, несомненно, очень удачно, и его конструкция была технически последовательна для условий того времени. Если самолет "Русский Витязь" был довольно несуразен, а фюзеляж его тонок, длинен и недостаточно жесткий, то все его недостатки были устранены в конструкции самолета "Илья Муромец". Будучи построен в конце 1913 г., самолет "Илья Муромец" был быстро освоен в эксплуатации и пилотировании даже в довольно сложных условиях. Это уже была не "этажерка" и не "стрекоза", как именовались некоторые самолеты того времени, а действительно воздушный корабль, поднимающий 1,5-- 2 тонны груза и способный к длительным полетам. Всего было построено 73 экземпляра самолетов "Илья Муромец" и последние экземпляры этих самолетов летали еще в 1921-- 1922 гг., т. е. как тип он прожил почти 10 лет -- для того периода этот срок значительный. Десятки самолетов "Илья Муромец" принимали участие в боевых действиях в первой мировой войне и, несмотря на то, что они привлекали внимание германской зенитной артиллерии и истребительной авиации, только один самолет был сбит на фронте. Это определялось его высокой живучестью и наличием круговой пулеметной обороны. Хотя поломок и аварий на этих самолетах было много, но катастроф относительно мало. При той широкой системе подражательства и копирования конструкций, которая имела место в период первой мировой войны, за рубежом самолеты, подобные самолету "Илья Муромец", были созданы только через 4-5 лет, после наступления некоторого промежуточного этапа двухмоторных конструкций, и, тем не менее, зарубежные варианты не были успешными. Так, например, германские самолеты Цеппелин "Штакен", хотя и были по размаху даже больше, чем "Илья Муромец", и имели более мощные двигатели, однако, относительный вес конструкции у них был очень велик и сама конструкция слишком сложна. К 1918-- 1920 гг. относится увлечение трехпланными и даже четырехпланными конструкциями. Примером огромного триплана может служить самолет Tarrant "Tabor", построенный в Англии в 1919 г. Он имел 6 двигателей по 500 л. с. каждый, размах по среднему крылу составлял 40 м, высота самолета около 11 м (у самолета "Илья Муромец" высота была только 4,5 м), двигатели были разнесены не только по размаху, но и по высоте, причем ось винта верхнего двигателя была на высоте около 8 м над землей. Самолет разбился при первой же попытке взлета, еще не оторвавшись от земли, -- в результате резкого подъема хвоста он уткнулся носом в землю. Еще более странно выглядел самолет Капрони СА-60 "Капрониссимо". У него были три трипланных крыла, поставленных одно за другим, размах крыльев составлял около 28 м, самолет имел восемь двигателей по 400 л. с. каждый. Самолет был построен в 1921 г. и тоже разбился при первом взлете. Теория индуктивного сопротивления показала, что расположение несущих систем одна за другой является совершенно нецелесообразным, и самолет "Капрониссимо" лишь демонстрирует, по какому ошибочному пути может идти создание летательного аппарата при отсутствии теории или благоприятного эксперимента с моделями. Был и у нас неудачный эксперимент с трипланом. В 1920-- 1921 гг. специальное конструкторское бюро под названием "Комиссия по тяжелой авиации" (КОМТА), в состав которого входили виднейшие специалисты по аэродинамике и самолетостроению, разработало и построило самолет "КОМТА", который должен был заменить самолет "Илья Муромец". Обладая почти такой же мощностью двигателей, как и самолет "Илья Муромец", самолет "КОМТА" был сделан по трипланной схеме и имел размах крыльев всего 16 м, т. е. вдвое меньше, чем у самолета "Илья Муромец". Самолет долго испытывался и даже без нагрузки с трудом отрывался. После ряда доводок он, кажется в 1922 г., совершил один полет по кругу, но к этому времени было уже ясно, что параметры самолета выбраны неправильно и поверочный расчет с использованием теории индуктивного сопротивления показал, что запас мощности у него даже без нагрузки очень мал. Неудача постигла и самолет В. А. Слесарева "Святогор" (1915-- 1916 гг.); казалось бы, конструктивно он был продуман более тщательно, чем "Илья Муромец", шасси он имел более высокое и более красивое, но, видимо, значительно более тяжелое. Основная причина неудачи заключалась в применении центрального расположения двигателей (в фюзеляже) с передачей мощности на разнесенные винты. Такая передача давала большую потерю мощности и в итоге запас мощности у самолета оказался недостаточным. Следует сказать, что разнесение двигателей по крылу, как это впервые было сделано на самолете "Русский Витязь", является важным фактором в снижении веса конструкции у самолетов с большим размахом крыльев. Центральные силовые у

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору