Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Философия
   Книги по философии
      Цехмистро И.З.. Концепсия целостности -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  -
ой системы. Кобозева занимает вопрос, возможно ли осуществление процесса мышления в его вполне однозначной силлогической форме с помощью молекулярных механизмов. 133 Термодинамическое исследование процесса мышления проведено Кобозевым через анализ термодинамики решения логической задачи и ее постановки. Он показывает, что процесс логического мышления может быть уподоблен самопроизвольному термодинамическому процессу, ибо формальное логическое суждение (например, категорический силлогизм) однозначно и необходимо вытекает из принятых посылок, т. е. логические суждения (решения), в отличие от информационных процессов, представляют собой необходимое и самопроизвольное образование, способное производить работу и обладающее самостоятельной устойчивостью. Следовательно, логическую задачу, имеющую самопроизвольное и однозначное решение, нельзя задать как задачу информационную - в виде множества одинаковых "частиц-шансов", находящихся в состоянии броуновского движения, - чтобы решению данной задачи отвечало собрание всех N-шансов в одной из z-ячеек. Такая термодинамическая модель пригодна для информации, но не для мышления [65], ибо термодинамические условия процесса информации и мышления различны. Существенное и принципиальное различие между информационными и логическими процессами, как считает Кобозев, заключается в следующем. Прежде всего самопроизвольное изменение информации от любого состояния с заданной вероятностью p1, p2, ..., рn идет только в направлении выравнивания вероятностей различных исходов, так что p1?p2?????pz???z. В результате самопроизвольного информационного процесса устанавливается максимально вырожденное состояние с наибольшим уровнем энтропии, что по существу означает исчезновение информации, а не достижение некоторого одного, вполне определенного исхода, как это имеет место в случае логического вывода. Второе фундаментальное отличие информации от логического решения заключается в неограниченной повторяемости (воспроизводимости) логического вывода, что отвечает его полной безэнтропийности. Под безэнтропийностью логического суждения понимается точная воспроизводимость данного результата из данных посылок согласно данному алгоритму. Причем безэнтропийность характерна только для конечного результата мыслительного процесса - логического умозаключения. Сам же процесс мышления может содержать энтропийную компоненту, от которой сознание, однако, способно освободить его, превратив в безэнтропийный логический вывод. Условие безэнтропийности формально-логического суждения, на котором основана формальная и символическая логика, полностью отвлекающаяся от конкретного содержания посылок и умозаключений, позволяет изучить механизм логического 134 вывода, абсолютно безразличный к бесконечному воспроизведению и повторению. Данное условие определяет характер термодинамического решения этой логической предельной задачи и возможности ее реализации с помощью молекулярных механизмов. Получение информации моделируется на основе общей термодинамики в виде процесса принудительного (за счет работы информации) перевода всех "шансов" в одну из ячеек, по которым они при постановке задачи каким-либо образом распределены (Iинф<0; ??<0). Процесс же мышления моделируется на основе химической термодинамики в виде самопроизвольного перехода (z-1) сортов "шансов", сосредоточенных в одной ячейке, в один k-й сорт с падением свободной энергии и энтропии. Работа решения (суждения) L>0 и ???0, т. е. логический процесс идет с высвобождением достаточно большой работы и при этом имеет место значительное падение свободной энергии (??). Как показывает Кобозев, термодинамическим условием того, что данная задача является не информационной, а логической и способной к самопроизвольному переходу к преимущественно одному решению, служат I???>0 и L>0. Причем в случае L>>0 и ??реш>0 обеспечивается достаточно высокая степень однозначности и необходимости в протекании процесса, моделирующего логическое мышление. При условии L>0; ??>0 процесс суждения, умозаключения и т. п. идет самопроизвольно, но без достаточной однозначности. Кобозев предполагает, что он характеризует область вероятностного мышления. Поскольку для логического мышления абсолютно непреложными являются условия полной безэнтропийности при неограниченной воспроизводимости, для его модели, следовательно, необходимо исключение термодинамической энтропии (S=0) и равенство единице термодинамической вероятности (w=1). Следовательно, моделирующие результат решения логической задачи частицы k-го сорта в конечном состоянии должны приобретать некоторое единственное упорядочение, однозначное и абсолютно неизменное при неограниченных повторениях процесса логического доказательства. По мнению Н. И. Кобозева, предположение о том, что мышление осуществляется некоторыми механизмами, имеющими молекулярную природу, ведет к физически невыполнимым условиям: полная безэнтропийность молекулярных множеств возможна лишь при температуре абсолютного нуля. Чрезвычайно важным в этой связи представляется вывод Кобозева о том, что формально-логическое мышление несовместимо с термодинамикой и статистикой молекулярных систем, для которых не существует устойчивых динамических равновесий, полностью смещенных в одну сторону, и состояний, лишенных 135 энтропии. Другими словами, однозначное логическое мышление отвечает предельным условиям T=0; рn=1; Hk=0; Hi=0, которым не может удовлетворять никакая атомно-молекулярная система, поскольку абсолютный нуль для нее недостижим. Этим, подчеркивает Кобозев, принципиально ограничивается возможность молекулярного моделирования мышления как упорядочение кодируемого процесса. Таким образом, сравнительный анализ термодинамических моделей процесса информации и мышления, проведенный Кобозевым, позволяет сделать вывод о том, что информация выводима из мышления как его частный случай и является более простой синтаксической формой при потере мышлением самопроизвольности и однозначности. Обратная же индукция неосуществима: мышление нельзя вывести из информации [65]. Возможно, объяснение механизмов мышления следует искать на более высоком уровне структурной организации вещества мозга - клеточном или системно-клеточном. Здесь элементами являются настолько крупные образования, что их температурное равновесие со средой ослаблено, и они могут приближенно описываться как молекулярно-безэнтропийные механизмы. Подобные системы, функционирующие на основе макроскопических, а не молекулярных элементов, как показывает Кобозев, характеризуются системной энтропией Sсист. Эта энтропия зависит от степени макроскопичности системы ?м, показывающей, какая доля вещества находится в виде макроскопических элементов, от макроскопической энтропии Sм единицы вещества, от остаточной доли молекулярного состояния вещества (1 - ?м??и от энтропии этого состояния Sм Sсист = ?мSм + (1 - ?м)Sм Анализ приведенного соотношения показывает, что молекулярную энтропию вещественной системы можно уменьшить путем увеличения степени макроскопичности системы. Однако полностью исключить молекулярную энтропию не удается, так как в реальных физико-химических системах ?м всегда значительно меньше единицы [(1 - gм) Sм>0)], и данный тип энтропии может быть уничтожен только при T=0. Кроме того, Кобозевым показано, что Sсист>0, поскольку нет никаких путей уничтожения макроэнтропии системы. Эта энтропийная компонента системы принципиально не может быть устранена. Итак, переход к исследованию механизма мышления на системно-клеточном уровне не устраняет энтропию и статистический характер процесса. Поэтому с помощью физических систем и процессов на молекулярном и системно-клеточном уровнях 136 принципиально нельзя выразить, а следовательно, нельзя кодировать безэнтропийное состояние, в том числе и логическое мышление. Возникает парадокс, названный Кобозевым "термодинамическим парадоксом мышления": физически энтропийная система - мозг - способна производить безэнтропийное явление - мышление [65, с. 109]. При этом автор подчеркивает, что, оставаясь в области положительной энтропии, нельзя найти фактора или процедуры, способных свести к нулю энтропию физико-химических операций мозга. Она не может быть уничтожена иначе, как только путем подвода отрицательной энтропии, или антиэнтропии, выводящей мозг как биофизико-химическую систему за границы второго начала термодинамики и статистики. Идея о подводе антиэнтропии представляется Кобозеву единственно возможным способом преодоления термодинамического парадокса мышления. Однако остается неизвестным источник антиэнтропии мозга и ее физическая природа. Предположение Кобозева о существовании особого сорта "сверхлегких частиц", не подчиняющихся обычной термодинамике, представляется недостаточно аргументированным. Поиск решений термодинамического парадокса мышления Кобозев по существу не выводит за рамки традиционной парадигмы - стремления исчерпывающим образом описать реальность на основе множественных представлений. По-видимому, в этом и заключаются трудности решения данного парадокса, и носят они прежде всего методологический характер. Более перспективными представляются поиски решения "термодинамического парадокса мышления" через отказ от представления о множественной природе механизмов мышления [157], отказ от классической парадигмы научного объяснения, требующей объяснения изучаемого явления путем разложения его на конечное (или бесконечное) множество далее недетализируемых и неделимых исходных элементов. Кобозев не дает удовлетворительного решения выявленного им парадокса. Однако его вывод о принципиально различной природе механизмов осуществления информационных и мыслительных процессов имеет большое значение. Он представляется важным для понимания качественного различия механизмов реализации информационных процессов в технических устройствах переработки информации и мыслительной деятельности человека, осуществляемых им процессов логического мышления. Как показал Кобозев, невозможность построения полностью безэнтропийных механизмов на молекулярном или системном уровне обусловливает границы возможности самостоятельного прогресса автоматов за счет улучшения их термодинамических параметров ?м, Sм, Sсист. Неумение создать в машине 137 дополнительный параметр S (антиэнтропию), которым отличается человеческий мозг, считает Кобозев, образует глубокий разрыв между мозгом и любым механизмом, построенным из атомно-молекулярного материала и действующим в границах обычной статистики. На этом основании автор показывает ошибочность тезиса Эшби о том, что ограничения для упорядочение мыслящего мозга и для машины по сути одни и те же, поскольку они присущи любой системе, поведение которой упорядочено и подчинено определенным законам. Существенное их различие обусловлено тем, что мыслящий мозг, в отличие от автомата, работает в области нулевой и отрицательной энтропии (антиэнтропии), и трудности моделирования мыслительных процессов на технических устройствах переработки информации носят не технический, а принципиальный характер. Безэнтропийность работы ЭВМ - практически неограниченная и точная повторяемость результатов - условна, поскольку полностью замкнутой системой здесь является не машина, а система машина - человек. В форме символического кода человек передает машине свою способность к безэнтропийному решению алгоритмизированных задач и прочтению их решения. Для этого опознавательная ячейка символа должна быть достаточно большой, чтобы системная энтропия машины не выводила состояние символа за границы ячейки и не вносила неопределенности в ее опознание. Таким образом, в работах Кобозева показано, что предположение об ответственности за процессы мышления некоторых множественных по своей природе механизмов недопустимо: какова бы ни была конкретная природа механизмов, лежащих в основе появления и существования мышления, они не могут быть сконструированы из множества изначально индивидуализированных элементов, чем бы последние ни являлись. Ценность работ Кобозева и полученных им результатов - вывода о несостоятельности предположения об ответственности за процессы мышления некоторых множественных по своей природе механизмов - не снижается появившимися в последнее время исследованиями в области неравновесной термодинамики и синергетики. Достижения И. Пригожина, М. Эйгена в объяснении некоторых сторон эволюции биологических систем с помощью методов неравновесной термодинамики и исследования Г. Хакена, разрабатывающего синергетический подход к изучению механизмов и закономерностей самоорганизации - совокупного, коллективного эффекта взаимодействия большого числа подсистем, приводящего к образованию устойчивых структур, - имеют выдающееся значение. Но концепция неравновесной термодинамики, 138 созданная коллективом бельгийских ученых во главе с И. Пригожиным, не позволяет получить полностью безэнтропийное состояние, соответствующее строго однозначному результату логического вывода. Объекты, описываемые с помощью неравновесной термодинамики, могут эволюционировать по линии отрицательных флуктуации производства энтропии и повышения степени организации их путем закрепления ее в отборе, но тем не менее они всегда остаются в области положительных (больших нуля) значений энтропии. Смысл же работ Кобозева направлен на поиски путей достижения полностью безэнтропийного состояния (S=0), что единственно может соответствовать полной безэнтропийности и идеальности логического (дискурсивного) мышления. Кроме того, в основу теории М. Эйгена положена изначальная способность живых организмов к размножению в статистически значимом количестве копий с абсолютно точным воспроизводством информации в подавляющем большинстве копий и способность к автокаталитическому росту. Эти две посылки остаются без объяснений; они просто принимаются (насколько можно понять, с надеждой на последующее их объяснение с точки зрения квантовой физики). Синергетика, которая в некоторых отношениях выходит за рамки неравновесной термодинамики (в частности, в ней исследуются явления, происходящие в точке неустойчивости, где определяется та новая структура, которая возникает за порогом неустойчивости), в нынешнем ее состоянии еще не свидетельствует о достижениях безэнтропийного состояния в коллективах множеств нейронов (или других элементов мозга), необходимых, согласно Кобозеву, для адекватного моделирования логического мышления. Рассмотренные физико-химические исследования позволяют говорить об ошибочности отождествления информации и мышления, ошибочности представления мышления как частного случая информационного процесса. В этой связи остается справедливым утверждение П. В. Копнина о том, что понимание мышления как информационного процесса не может служить исходным методологическим пунктом в изучении мышления. Исследования психологов подтверждают данную точку зрения. Особый интерес представляют работы А. В. Брушлинского, последовательно проводящего мысль о принципиальном различии информационных и психических процессов, о невозможности представить последние как совокупность однородных, относительно неизменных событий, поскольку мыслительная деятельность является изначально целостной и неаддитивной. Это обусловлено тем, что в процессе непрерывного взаимодействия субъекта с познаваемым объектом последний выступает в новых 139 качествах, поскольку включается во все новые и существенные связи и отношения. Значит, каждая последующая стадия мыслительного процесса хотя бы в минимальной степени, но существенно отличается от предыдущей. Таким образом, различные стадии мыслительного процесса настолько органично взаимосвязаны, что их нельзя рассматривать как дизъюнктивно отделенные друг от друга элементы множества, лишенные внутренних генетических связей. Операции и любые другие компоненты психического не даны заранее в готовом виде, в качестве четко отделенных друг от друга элементов (именно из этого исходят сторонники компьютерной метафоры), а формируются в органической связи друг с другом в ходе данного процесса. В ходе решения мыслительной задачи, как убедительно доказано экспериментами, проводимыми в Институте психологии АН СССР, постепенно прогнозируемые конечные и промежуточные выводы являются искомыми, неизвестными, а не наперед заданными [31, с. 103-204]. Поэтому реальный мыслительный процесс не характеризуется ситуацией альтернативного выбора, непосредственностью и однозначностью в своей детерминации, специфичными для обратной связи и обеспечивающими предельно четкие критерии правильности решения. Человек осуществляет поиск решения задачи на основе строго определенного, непрерывно, но неравномерно формирующегося прогнозирования искомого. Семантический микроанализ подробных протоколов психологических опытов (живой устной речи) дает основания сделать вывод, что прогнозирование искомого осуществляется прежде всего в форме операционной схемы, реализующей анализ через синтез. На основе такой схемы субъект предвосхищает свойства познаваемого объекта и конкретные способы его познания. Прогнозирование искомого есть в конечном счете все более глубокое и в целом необратимое обобщение существенных отношений познаваемых свойств объекта и способов их познания. Поэтому мышление как процесс не осуществляется по принципу дизъюнктивного выбора из альтернатив, как это имеет место в эвристических информационно-логических программах. В мыслительном процессе не существует изначально предопределенного конечного состояния или его эталона, с которым можно было бы непосредственно сличать промежуточные состояния и результаты. Кроме того, изначальная расчлененность невозможна и по отношению к различным аспектам психического процесса - познавательным и аффективным, осознанным и неосознанным, процессу и продукту. Они тесно связаны онтологически. Поэтому выделение различных сторон психического и его расчленение как живого процесса "возможны лишь на основе анализа через синтез, включающего этот сложнейший предмет исследования в 140 различные системы связей и отношений, в которых он выступает в соответственно разных качествах" [31, с. 135]. Включение познаваемого объекта в новую систему отношений - как бы мысленное поворачивание одного и того же объекта различными сторонами - открывает новые направленности мышления в процессе поиска неизвестных, но существенных свойств объекта, позволяет понять переход от одной системы связи к другой, преемственность в познании того или иного объекта. В то же время на основе анализа через синтез - всеобщего "механизма" мышления - становится возможным понять непрерывность, преемственность, недизъюнктивность всех компонентов психического, мыслительного процесса. Преобладание "фактора элементарности" над "фактором целостности", абсолютизация множественного подхода к пониманию мышления и структурной организации мозга, характерное для теоретико-информационного подхода, обусловлено основной парадигмой научного исследования, сформировавшейся в классической науке. Суть ее заключается в том, что подлинное понимание сущности явления достигается только при расчленении объекта на отдельные элементы, при аналитически изолированном изучении каждого элемента, различные сочетания которых призваны объяснить все многообразие мира. В основе такой методологической установки познания лежит веками формировавшееся убеждение, что мир обязательно допускает разложение на дискретные элементы - отдельные, неизменные, четко отделенные друг от друга "атомы", связанные между собой только внешними вещественно-энергетическими (физико-химическими) связями. Такая установка сформировалась в классической науке под влиянием специфических особенностей объекта ее исследования - суммативного, механически целостного, элементы которого физически отделены друг от друга (его можно разделить на эти элементы, затем из них вновь собрать целое). Отсюда стремление найти элементарные сущности, различным сочетанием которых можно было бы объяснить все многообразие вещей в природе. Но адекватна ли классическая методологическая парадигма объекту исследования современной науки - многофакторной сложноорганизованной системе? Достаточна ли она для понимания ц

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору