Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Философия
   Книги по философии
      Фреге Готлоб. Основоположения арифметики -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  -
. §104. Всё зависит от того, чтобы установить смысл суждения отождествления для новых чисел. §105. Очарование арифметики заключается в её разумном характере. §106 - 109. Ретроспективный взгляд. ВВЕДЕНИЕ Если мы зададим вопрос, что такое число один, или что обозначает знак 1, то большей частью получим ответ: Наверное, какую-то одну вещь. И если затем мы укажем на то, что предложение "(die) Число один есть (ein) вещь" не является определением, поскольку с одной его стороны стоит определённый артикль, а с другой - неопределённый, что это предложение означает только то, что число один относится к вещам, но не то, какой вещью оно является, нам, вероятно, предложат выбрать для себя какую-нибудь вещь, которая называлась бы одной. Но если каждый в праве понимать под этим именем то, что ему хочется, тогда одно и то же предложение об один означало бы различное для разных людей; у таких предложений не было бы общего содержания. Некоторые, вероятно, отклонят вопрос ссылкой на то, что значение буквы а в арифметике тоже нельзя указать; и если говорят: а означает число, то в этом можно найти те же самые изъяны, как и в определении: один есть число. При ссылке на а отвод вопроса совершенно оправдан: она не означает определённого, заданного числа, но служит для того, чтобы выразить общность предложений. Если вместо а в а + а - а = а подставить любое, но всюду одно и то же число, то всегда получится истинное равенство. Буква а используется в этом смысле. Но с один дело обстоит существенно иначе. Можем ли мы в равенстве 1 + 1 = 2 вместо 1 в обоих случаях подставить один и тот же предмет, скажем, Луну? Напротив, кажется, что вместо первой 1 мы должны поставить нечто другое, чем вместо второй. В чём же дело, что здесь должно происходить как раз то, что в том случае было бы ошибкой. Чтобы выразить отношения между разными числами, арифметика не обходится одной буквой а, но должна использовать ещё и другие (b, c и т.д.). Таким образом, следовало бы полагать, что знака 1, если он сходным образом служит для придания общности предложениям, также могло бы не хватать. Но разве число один не выглядит как определённый предмет с заданными свойствами, например, оставаться неизменным при умножении на само себя? В этом смысле нельзя задать свойства а, поскольку то, что высказывается об а, есть общее свойство чисел, тогда как 11=1 ничего не высказывает ни о Луне, ни о Солнце, ни о Сахаре, ни о Тенерифском пике, ибо, что могло бы быть смыслом такого высказывания? На такие вопросы, пожалуй, и большинство математиков не готовы дать удовлетворительного ответа. Не постыдно ли науке так и пребывать в неясности о её первейшем и, по-видимому, таком просто предмете? Ещё менее можно сказать, что такое число. Когда понятие, которое лежит в основании обширной науки, преподносит затруднения, неотложная цель, пожалуй, всё-таки состоит в его более тщательном исследовании и преодолении этих затруднений; пока осмотр основания всего строения арифметики всё ещё остаётся недостаточным, особенно трудно здесь, быть может, удастся придти к полной ясности относительно отрицательных, дробных и комплексных чисел. Многие, правда, сочтут, что это не стоит труда. Ведь с этим понятием, как они полагают, достаточно иметь дело в элементарных руководствах и на этом успокоится на всю жизнь. Кто поверит, что в таком простом деле всё ещё можно чему-то научиться! Ибо понятие положительного целого числа так свободно от всяких затруднений, что и ребёнок может обращаться с ним научно исчерпывающе и что каждый без дальнейших размышлений и без знакомства с тем, что думали другие, точно знает в нём толк. Так что часто недостаёт того первого предварительного условия обучения: знание незнания. В результате всё ещё довольствуются грубым пониманием, хотя уже Гербарт учил правильнее4. Печально и обескураживающе, что знание, которое уже было достигнуто, всегда, таким образом, находится под угрозой опять пропасть, что так много работы кажется напрасной, поскольку человек в воображаемом богатстве уверен в ненужности усвоения её результатов. Я хорошо вижу, что также и данная работа подвержена такой опасности. Мне противна та грубость понимания, когда счёт называется комбинаторным, механическим мышлением5. Я сомневаюсь, что такое мышление вообще существует. Комбинаторное воображение, наконец, даже может быть утрачено, но для счёта это не имеет значения. По существу мышление всюду одинаково; ведь различные виды мышления не принимаются в расчёт сообразно предметам. Различия заключаются только в большей или меньшей чистоте и независимости от психологических влияний и от внешней помощи мышлению такой, как язык, знаки чисел и т.п.; затем, кое-что ещё зависит от тонкостей в строении понятия, но как раз во внимании к этому математику не могут превзойти ни наука, ни сама философия. Из данного сочинения можно усмотреть, что даже кажущийся собственно математическим вывод от n к n + 1 покоится на общих логических законах, что нет нужды в особых законах комбинаторного мышления. Можно, конечно, употреблять числовые знаки механически, как можно говорить подобно попугаю; но всё-таки едва ли так можно назвать мышление. Употреблять числовые знаки механически возможно только после того, как посредством действительного мышления математический знаковый язык разовьётся так, что он, как говорят, мыслит за нас. Последнее не доказывает, что числа образуются особым механическим способом, скажем, как куча песка образуется из гранул кварца. Я думаю, в интересах математиков противиться такому воззрению, которое удобно для того, чтобы принизить главный предмет их науки, а с тем и её саму. Но даже у математиков находятся вполне сходные изречения. Напротив, за понятием числа должно признать более тонкую структуру, чем у большинства понятий других наук, хотя оно и является простейшим арифметическим понятием. Чтобы опровергнуть то заблуждение, что при ссылке на положительные целые числа собственно вовсе нет противоречий, но царит совершенное согласие, мне кажется подойдёт обсуждение мнений философов и математиков о вопросах, подлежащих здесь рассмотрению. Будет видно, как мало оказывается согласия, так что встречаются прямо противоположные изречения. Одни, например, говорят: "Единицы равны друг другу"; другие считают их за различные; для своих утверждений и те, и другие имеют основания, которые нельзя отклонить на скорую руку. Этим я стараюсь пробудить потребность в более тщательном исследовании. Одновременно я хочу посредством предварительного освещения явных воззрений других расчистить поле для своего собственного понимания, с тем, чтобы сразу убедить, что эти другие пути не ведут к цели, и что моё мнение не является равноправным среди многих; и я надеюсь, таким образом, окончательно решить вопрос, по крайней мере, в главном. Конечно, благодаря этому мои пояснения, пожалуй, станут более философскими, чем может показаться уместным многим математикам; но основательное исследование понятия числа всегда должно проходить несколько философски. Для философии и математики эта задача является общей. Если совместная работа этих наук, несмотря на множество атак с обеих сторон, не является столь успешной, как хотелось бы и как, пожалуй, могло бы быть, то это, как мне кажется, зависит от преобладания в философии психологических способов рассмотрения, проникающих даже в логику. С данной тенденцией математика вовсе не имеет точек соприкосновения, и этим легко объясняется антипатия многих математиков к философскому рассмотрению. Когда, например, Штриккер6 называет представления чисел моторными, зависящими от мускульных ощущений, то в этом математики не могут опознать свои числа и не знают, как приниматься за такое предложение. Арифметика, основанная на мускульных ощущениях, конечно, оказалась бы вполне чувственной, но в результате также и столь же расплывчатой, как и это основание. Нет, арифметика вовсе не должна работать с ощущениями. И столь же мало с внутренними образами, сливающимися из следов более ранних чувственных впечатлений. Переменчивость и неопределённость, характеризующие все эти образования, находятся в сильном контрасте с определённостью и устойчивостью математических понятий и предметов. Можно ведь и с пользой рассматривать представления и их изменения при математическом мышлении; но психология не должна воображать, что она может внести какой-то вклад в обоснование арифметики. Для математиков как таковых эти внутренние образы, их происхождение и изменение безразличны. Сам Штриккер говорит, что при слове "сто" он не представляет себе ничего более, кроме знака 100. Другие могут представлять себе букву С или что-то ещё. Не следует ли отсюда, что эти внутренние образы в нашем случае для существа дела совершенно безразличны и случайны, так же случайны, как и то, что чёрная доска и кусок мела вообще не заслуживают называться представлением числа сто? Всё же в таких представлениях не следует видеть существо дела! Не следует принимать описание того, как возникает представление, за определение, не следует принимать указание на душевные и телесные условия, приводящие предложение к сознанию, за доказательство, и не следует смешивать процесс, в котором предложение становится мыслимым, с его истинностью! Необходимо, как кажется, помнить, что предложение, когда я его более не мыслю, перестаёт быть истинным столь же мало, как уничтожается Солнце, когда я закрываю глаза. Иначе мы пришли бы к тому, что при доказательстве теоремы Пифагора нужно учитывать фосфорное содержание нашего мозга и что астроном не распространяет свои заключения на давным-давно прошедшие времена, опасаясь возражения типа: "Ты вот считаешь, что 2 ? 2 = 4; но ведь представление числа имеет развитие, историю! Можно сомневаться в том, было ли оно в те далёкие времена. Откуда ты знаешь, что в том прошлом это предложение уже имело место? Разве не могли существа, жившие в те времена, придерживаться предложения 2 ? 2 = 5, из которого предложение 2 ? 2 = 4 развилось лишь посредством естественного отбора в борьбе за существование и которому в свою очередь, может быть, назначено тем же самым способом развиться в 2 ? 2 = 3?" Est modus in rebus, sunt certi denique fines!7 Исторический способ рассмотрения, прислушивающийся к становлению вещи и из становления старающийся познать её сущность, определённо во многом оправдан; но он также имеет и свои границы. Если все вещи не были бы прочными и вечными, а находились в постоянном потоке, то мир перестал бы быть познаваемым и всё перепуталось. Кажется, думают, что в отдельной душе понятия возникают также как листья на деревьях, и полагают, что их сущность можно познать, исследуя их возникновение, и ищут их объяснение психологически в природе человеческой души. Но такое понимание переводит всё в субъективное и, если следовать ему до конца, упраздняет истину. То, что называют историей понятия, является, пожалуй, историей или нашего познания понятия, или значений слов. Познать понятие в его чистоте, освободить его от чуждых наслоений, скрывающих его от духовного взора, впервые удаётся посредством значительной духовной работы, которая может продолжаться в течение столетий. Ну и что же следует сказать на то, когда кто-нибудь вместо того, чтобы продолжать эту работу, если она выглядит ещё незаконченной, считает её за ничто, идёт в детскую или переносит себя на мыслимые древнейшими ступени развития человечества, чтобы там, подобно Дж.С.Миллю, открывать арифметику пряников и булыжников! Не хватает только того, чтобы приписать приятным вкусовым качествам пироженного особое значение для понятия числа. Это прямо противоположно разумным методам и в любом случае нематематично настолько, насколько возможно. Ничего удивительного, что математики не желают знать об этом! Вместо того чтобы искать особую чистоту понятий там, где поблизости предполагается их источник, всё видится расплывчатым и неразличимым, как в тумане. Всё обстоит так, как если кто-нибудь, чтобы разузнать об Америке, хотел бы вернуться в ситуацию Колумба, когда тот увидел первый сомнительный отблеск своей предполагаемой Индии. Конечно, такое сравнение ничего не доказывает; но оно, надеюсь, поясняет моё мнение. Ведь может быть и так, что история открытий во многих случаях является полезной как подготовка для дальнейших исследований; но она не может занять их место. Что касается математиков, борьба с подобными мнениями, пожалуй, вряд ли необходима; но ведь по возможности я хочу излагаемые спорные вопросы привести к разрешению также и для философов, и вынужден в некоторой степени связываться с психологией, хотя и только для того, чтобы предотвратить её вторжение в математику. Впрочем, даже в учебниках по математике случаются психологические обороты. Когда чувствуют обязанность, но не могут, дать определение, то хотят, по крайней мере, описать способ, которым приходят к соответствующим предметам или понятиям. Этот случай легко узнать по тому, что в последующем к таким объяснениям больше не прибегают. Для учебных целей введение этих приспособлений даже вполне уместно; только их всегда нужно чётко отличать от определений. На то, что даже математики могут спутать основание доказательства с внутренними или внешними условиями проведения доказательства, забавный пример доставляет Э.Шрёдер8, предлагая под названием "Особая аксиома" следующее: "Задуманный принцип можно, пожалуй, назвать аксиомой неотъемлемости знаков. Она даёт нам уверенность в том, что при всех наших переходах и выводах знаки закрепляются в нашей памяти - а ещё прочнее на бумаге", и т.д. Насколько сильно математика должна протестовать против такой помощи со стороны психологии, настолько мало она может отрицать свою тесную связь с логикой. Да, в той мере, в которой признаётся, что каждое исследование об обязательности доказательства или оправдании определения должно быть логическим, я согласен с воззрением тех, кто считает невозможным резкое разделение. Но от таких вопросов математика вовсе и не отказывается, ведь только благодаря ответам на них достигается необходимая уверенность. Разумеется, в этом направлении я также иду далее обычного. Большинство математиков при исследованиях подобного рода довольствуются удовлетворением непосредственных потребностей. Если определение пригодно для использования в доказательстве, если нигде не наталкиваются на противоречие, если можно познать связи между вещами, которые кажутся далёкими друг от друга, и если, благодаря этому, получается более высокая упорядоченность и закономерность, то имеют обыкновение принимать определение за достаточное и гарантированное и мало спрашивают о его логическом оправдании. Подобное поведение, во всяком случае, имеет то благо, что не легко совершенно промахнуться мимо цели. Я тоже считаю, что определения должны оправдываться продуктивностью, возможностью проводить с их помощью доказательство. Но, пожалуй, следует принять во внимание, что строгость доказательства остаётся видимостью, даже при отсутствии пробелов в цепи заключений, если определения только задним числом оправдывают тем, что не столкнулись с противоречием. В сущности, так всегда достигают только уверенности, основанной на опыте, и должны собственно быть готовы, в конце концов, всё же встретить противоречие, которое приводит всё здание к обвалу. Поэтому, я полагаю, к общим логическим основаниям нужно обратиться в несколько большей степени, чем считает необходимым большинство математиков. В этом исследовании как основных я придерживаюсь следующих правил: - строго отделять психологическое от логического, субъективное от объективного; - о значении слова нужно спрашивать не в его обособленности, а в контексте предложения; - не терять из виду различие между понятием и предметом. Чтобы следовать первому правилу, я всегда буду употреблять слово "представление" в психологическом смысле и отличать представление от понятий и предметов. Если же остаётся незамеченным второе основное правило, за значение слов почти вынужденно принимаются внутренние образы или действия отдельной души, а это грешит также и против первого правила. Что касается третьего пункта, то это только видимость, если считают, что понятие, не изменяя его, можно сделать предметом. Отсюда, непрочной оказывается распространённая формальная теория дробей, отрицательных чисел и т.д. Задуманное мной изменение я могу в этом сочинении только наметить. Во всех таких случаях, как и в случае положительных целых чисел, всё зависит от установления смысла равенства. Я думаю, мои результаты, по крайней мере, по существу, найдут согласие тех математиков, которые возьмутся за труд принять во внимание мои доводы. Мне кажется, они носятся в воздухе, и отдельные из них, а может быть уже все, или, по крайней мере, подобные им, высказывались; но в такой связи друг с другом они всё ещё могут оказаться новыми. Меня иногда удивляло, что взгляды, в одном пункте подходившие к моему пониманию так близко, столь сильно отклонялись в другом. У философов же приём будет различаться сообразно точкам зрения; самый скверный будет, пожалуй, у тех эмпириков, которые за изначальный способ вывода хотят признавать только индукцию, и даже её не как способ вывода, но как привычку. Может быть, по данному поводу те или другие подвергнут основания своей теории познания обновлённой проверке. Тем же, кто мои определения может объявить за неестественные, я предлагаю обдумать то, что вопрос здесь не о естественности, но касается сути дела и логически свободен от возражений. Я лелею надежду, что при непредубеждённой проверке даже философы найдут в этом сочинении кое-что полезное. §1. После того, как в течение долгого времени математика отдалялась от евклидовой строгости, сейчас она возвращается к ней, и даже стремится её превзойти. В арифметике, уже вследствие индийского происхождения её многих методов и понятий, образ мыслей традиционно был слабее, чем в геометрии, преимущественно развиваемой греками. Появление анализа более высокого порядка только способствовало этому; ибо, с одной стороны, строгой трактовке данного учения противостояли значительные, почти непреодолимые затруднения, а, с другой стороны, казалось, что их преодоление мало вознаграждало за прилагаемые к этому усилия. Однако дальнейшее развитие преподавало всё яснее, что в математике не достаточна лишь моральная уверенность, поддержанная многими успешными применениями. Доказательство теперь требуется для многого такого, что прежде считалось само собой разумеющимся. Благодаря этому, во многих случаях впервые были установлены границы приемлемого. Обнаружилась необходимость в более точном определении понятий функции, непрерывности, предела, бесконечности. Более тщательной проверке своих полномочий должны были подвергнуться отрицательные и иррациональные числа. Таким образом, всюду обнаруживается стремление строго доказать, точно провести границы приемлемого, и для достижения этого, точно схватить понятие. §2. В том, что идёт ниже, следование этому пути должно привести к понятию числа9 и к простейшим предложениям, относящимся к позитивным целым числам и образующим основание всей арифметики. Конечно, числовые формулы, типа 5 + 7 = 12, и законы, типа закона ассоциативности сложения, так часто подтверждались бесчисленными применениями в каждодневном использовании, что почти нелепым могло бы выглядеть желание посеять сомнения потребностью в доказательстве. Но к сущности математики относится то, что она всюду, где возможно доказательство, предпочитает последнее оправданию посредством индукции. Евклид доказывает многое из того, с чем и без этого с ним согласился бы каждый. Между тем, некоторые остаются неудовлетворёнными и евклидовой строгостью, когда переходят к исследованиям, связанным с аксиомой о параллельных. Таким образом, в правильном направлении уже много раз двигались те, кто, прежде всего, чувствовал потребность в большей строгости, и эта потребность всегда расширялась и крепла. Доказательство как раз имеет целью не только поставить истинность предложений вне всяких сомнений, но также и просмотреть зависимос

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору