Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Философия
   Книги по философии
      Фреге Готлоб. Основоположения арифметики -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  -
ть истин друг от друга. Убедившись в непоколебимости каменной глыбы в тщетных попытках её передвинуть, можно далее задаться вопросом, что же её так надёжно удерживает? При дальнейшем продолжении таких исследований всё сводится к немногим первичным истинам; и это упрощение само по себе уже является целью, достойной, чтобы её добиваться. Может быть, подтвердится также надежда, что приводя к сознанию то, с чем люди в простейших случаях обращались инстинктивно, можно получить общие способы образования понятий или обоснований, которые применимы также и в запутанных случаях, и этим выделить общезначимое. §3. К таким исследованиям меня также побуждают философские мотивы. Вопросы об априорной или апостериорной, синтетической или аналитической природе арифметических истин ждёт здесь своего ответа. Ибо, даже если сами эти понятия и принадлежат философии, я всё же думаю, что решение не может воспоследовать без помощи математики. Разумеется, это зависит от смысла, приданного каждому из этих вопросов. Нередко случается так, что сперва получают содержание предложения, и затем проводят его строгое доказательство другим, более трудным способом, посредством которого часто условия пригодности могут быть также изучены более точно. Таким образом, вопрос о том, как мы приходим к содержанию суждения, в общем, нужно отделять от вопроса, каким образом мы оправдываем наше утверждение. Эти различения априорного и апостериорного, синтетического и аналитического, по моему10 мнению, относятся к пониманию не содержания суждений, но оправдания вынесения суждения. Ведь там, где это оправдание отсутствует, пропадает также и возможность данных подразделений. Разве априорная ошибка не такой же вздор, как, скажем, голубое понятие? Когда предложение называют апостериорными или аналитическими в моём смысле, судят не о психологических, физиологических и физических обстоятельствах, которые делают возможным образование содержания предложения в сознании, а так же не о том, как другой, возможно ошибочно, приходит к тому, что он считает его истинным, но о том, на чём в самых глубинных основаниях покоится оправдание признания за истинное. Благодаря этому, если речь идёт о математической истине, вопрос переводится из области психологии в область математики. Теперь это зависит от того, чтобы найти доказательство и свести математическую истину к первичным истинам. Если на этом пути наталкиваются только на общие логические законы и определения, то обладают аналитической истиной, причём предполагается, что при рассмотрении указаны также и предложения, от которых возможно зависит допустимость определения. Но если невозможно провести доказательство без использования истин, не имеющих общей логической природы, но относящихся к особой области науки, то предложение является синтетическим. Для того чтобы истина была апостериорной, требуется, чтобы её доказательство не удавалось без ссылки на факты; т.е. на недоказуемые истины, не обладающие всеобщностью, которые содержат высказывание об определённых предметах. Если, наоборот, возможно провести доказательство всецело из общих законов, которые сами не способны и не нуждаются в доказательстве, то истина является априорной11. §4. Исходя из таких философских вопросов, мы приходим к тем же самым требованиям, которые независимо от этого вырастают в области самой математики: доказать с наибольшей строгостью, если только возможно, основные предложения арифметики; ибо, только если тщательно устранять каждый пробел в цепи выводов, можно с уверенностью сказать, на какие первичные истины опирается доказательство; и только когда последние известны, можно ответить на эти вопросы. Итак, если пытаются следовать данным требованиям, то очень скоро приходят к предложениям, доказательство для которых невозможно до тех пор, пока входящие в них понятия не удаётся разложить на более простые или подвести под более общие. В данном случае это относится ко всем числам, которые должны быть либо определены, либо признаны за неопределяемые. Это и должно быть задачей данной книги12. От её выполнения зависит решение относительно природы арифметических законов. Рассмотрению самого этого вопроса, я предпосылаю кое-что, что может дать указание, каков может быть на него ответ. А именно, если с других точек зрения обоснованно окажется, что принципы арифметики являются аналитическими, то это также говорит об их доказуемости и об определимости понятия числа. Противоположный эффект дал бы основания в пользу апостериорности этих истин. Поэтому предварительному освещению должен, прежде всего, подвергнуться этот спорный пункт. I. МНЕНИЯ ОТДЕЛЬНЫХ АВТОРОВ О ПРИРОДЕ АРИФМЕТИЧЕСКИХ ПРЕДЛОЖЕНИЙ. ДОКАЗУЕМЫ ЛИ ЧИСЛОВЫЕ ФОРМУЛЫ? §5. Числовые формулы, типа 2 + 3 = 5, которые имеют дело с определёнными числами, необходимо отличать от общих законов, имеющих силу для всех целых чисел. Первые отдельными философами13 считались недоказуемыми и непосредственно ясными, как аксиомы. Кант14 толковал их как недоказуемые и синтетические, но опасался называть аксиомами, поскольку они не являются общими и поскольку их число бесконечно. Ханкель15 оправданно называет предположение о бесконечной множественности недоказуемых первичных истин неуместным и парадоксальным. В самом деле, оно противоречит потребности разума в наглядности первых основоположений. А разве непосредственно очевидно, что 135664 + 37863 = 173527? Нет! И как раз это приводит Канта к синтетической природе таких предложений. Но ещё больше это говорит против их недоказуемости; ибо, как можно было бы усмотреть их иначе, нежели через посредство доказательства, ведь они не являются непосредственно очевидными? Кант хочет призвать на помощь созерцание пальцев или точек, из-за чего попадает в опасность, что эти предложения, согласно его мнению, могут показаться эмпирическими, поскольку созерцание 37863 пальцев, во всяком случае, всё же не чисто. Также и выражение "созерцание", по-видимому, не оправдано, ведь уже 10 пальцев в своём расположении друг за другом могут вызывать различные созерцания. Разве мы вообще можем обладать созерцанием 135664 пальцев или точек? Если можем, да к тому же обладаем созерцанием 37863 пальцев и ещё 173527, тогда оправданность нашего равенства, если оно не является доказуемым, должна быть точас же очевидной, по крайней мере, для пальцев; но это не так. Кант, очевидно, подразумевал только малые числа. Формулы, которые для них непосредственно очевидны через созерцание, затем были бы доказуемы для больших чисел. Сомнительно, однако, проводить принципиальное различие между малыми и большими числами, в особенности нельзя указать строгую границу. Если же числовые формулы были бы доказуемы, скажем, с 10, то оправдан вопрос: почему не с 5, не с 2, не с 1? §6. Другие же философы и математики утверждали доказуемость числовых формул. Лейбниц16 говорит: ""Два и два - четыре" - это совсем не непосредственная истина, если под четырьмя понимать три и один. Её можно, следовательно, доказать и вот каким образом. Определения: 1) 2 - это 1 и 1, 2) 3 - это 2 и 1, 3) 4 - это 3 и 1. Аксиома: "При подстановке равных величин равенство сохраняется". Доказательство: 2 и 2 - это 2 и 1 и 1 (по определению 1), 2 и 1 и 1 - это 3 и 1 (по определению 2), 3 и 1 - это 4 (по определению 3), следовательно (по аксиоме) 2 и 2 = 4." Это доказательство на первый взгляд построено всецело из определений и приведённой аксиомы. Последнюю также можно преобразовать в определение, как сам Лейбниц и поступает в другом месте17. Кажется, что об 1, 2, 3, 4 не нужно знать более того, что содержится в определениях. Однако при более тщательном рассмотрении обнаруживается пробел, который скрыт пропуском скобок. А именно, при большей точности нужно записать: 2 + 2 = 2 + (1 + 1) (2 + 1) + 1 = 3 + 1 = 4. Здесь пропадает предложение 2 + (1 + 1) = (2 + 1) + 1, которое является особым случаем a + (b + c) = (a + b) + c. Если предполагается данный закон, то легко видеть, что так можно доказать каждую формулу сложения. Каждое число тогда определяется из предшествующего. В самом деле, я не вижу, каким более подходящим, чем лейбницевский, способом нам могло бы быть дано, скажем, число 437986. А так прийти к нему всё же в наших силах, даже не обладая никаким его представлением. Посредством таких определений бесконечное множество чисел сводится к однёрке и увеличению на один, и каждая из бесконечно многих числовых формул может быть доказана из нескольких общих предложений. Такого же мнения придерживаются Г.Грассман и Г.Ханкель. Первый хочет получить закон а + (b + 1) = (a + b) + 1 посредством определения, говоря18: "Если a и b являются произвольными членами основного ряда, то под суммой a + b понимается тот член основного ряда, для которого имеет силу формула a + (b + e) = a + b + e". При этом е должно обозначать положительную единицу. Против данного объяснения можно возразить двояко. Прежде всего, сумма объясняется через саму себя. Если ещё не известно, что должно обозначать a + b, выражение a + (b + e) также не понятно. Но это возражение, пожалуй, можно устранить, сказав (конечно, противореча дословному тексту) что хотят объяснить не сумму, но сложение. Тогда всегда ещё можно возразить, что a + b - это пустой знак, если в основном ряду нет никакого члена или нескольких членов требуемого вида. То, что этого не случается, Грассман просто предполагает без доказательства, так что строгость всего лишь иллюзорна. §7. Можно подумать, что числовые формулы являются синтетическим или аналитическими, апостериорными или априорными смотря по тому, какими являются общие законы, от которых зависит их доказательство. Однако этому противостоит мнение Джона Стюарта Милля. Правда вначале кажется, что он, как и Лейбниц, хочет основать науку на определениях19, поскольку объясняет отдельные числа также как он; но его предрассудок, что все науки являются эмпирическими, тотчас портит правильную мысль. А именно, он поучает нас20, что это определения не в логическом смысле, что они не только устанавливают значение выражения, но вместе с тем также утверждают наблюдаемый факт. Чем же во всём мире мог бы быть наблюдаемый или, как также говорит Милль, физический факт, который утверждается в определении числа 777864? Из всего обилия физических фактов, открывающихся перед нами, Милль называет один единственный, который может утверждаться в определении числа 3. Согласно ему он состоит в том, что имеется объединение предметов, которое, пока последние формируют смысл впечатления от ооо, может быть разъединено на две части, типа следующих: оо о. Всё-таки, как хорошо, что не всё в мире склёпано и сколочено; тогда мы не смогли бы взяться за такое разъединение, и 2 + 1 не было бы 3! Как жаль, что Милль не изобразил также физический факт, лежащий в основании чисел 0 и 1! Милль продолжает: "Раз такое предложение доказано, мы называем все такие сочетания "тремя""21. Отсюда узнаётся, что собственно неверно, когда часы бьют три, говорить о трёх ударах, или называть сладкое, кислое и горькое тремя вкусовыми ощущениями; так же не одобряется и выражение "три способа решения уравнения"; поскольку об этом никогда не получить такого чувственного впечатления, как от ооо. Теперь Милль говорит: "Вычисления вытекают не из самого определения, а из предполагаемой им арифметической теоремы о существовании группы предметов, которая производит на чувство такое впечатление"22. Но где же в приведённом выше доказательстве Лейбниц должен сослаться на упомянутый факт? Милль упускает возможность удостоверить пробел, хотя он даёт вполне соответствующее лейбницевскому доказательство предложения 5 + 2 = 723. Действительно, имеющийся в наличие пробел, заключающийся в пропуске скобок, он не замечает так же, как и Лейбниц. Если определение каждого отдельного числа действительно утверждает особый физический факт, то нельзя было бы в достаточной мере восхищаться человеком, который проводит вычисления с девятизначными числами, из-за физического характера его знания. Возможно, мнение Милля всё же не доходит до того, что все эти факты должны наблюдаться в отдельности, но достаточно посредством индукции вывести общий закон, в который все они были бы включены. Но при попытке сформулировать такой закон оказывается, что это невозможно. Недостаточно сказать: Существует большая совокупность вещей, которую можно разложить; ибо этим не говорится, что существует совокупность такого размера и вида, которая требуется, скажем, для определения числа 1000000, а также не указывается точнее способ разделения. Миллевское понимание с необходимостью должно вести к требованию, чтобы для каждого числа наблюдался особый факт, поскольку в общем законе было бы потеряно как раз то своеобразие числа 1000000, которое необходимо принадлежит его определению. В самом деле, согласно Миллю нельзя установить 1000000 = 999999 + 1, если не наблюдается именно своеобразный способ разделения совокупности вещей, который отличается от способа, подобающего для какого-либо другого числа. §8. Милль, видимо, считает, что определения 2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1 и т.д. нельзя образовать до тех пор, пока не наблюдались упомянутые им факты. В самом деле, 3 нельзя определить как (2 + 1), если (2 + 1) вовсе не придан смысл. Но спрашивается, разве необходимо для этого наблюдать указанную совокупность и её разделения? Тогда было бы загадочно число 0; потому что до сих пор, пожалуй, никто не видел и не трогал 0 булыжников. Милль, конечно, объяснил бы 0 как нечто бессмысленное, только как манеру речи; вычисления с 0 были бы лишь игрой с пустыми знаками, и остаётся только удивляться, каким образом при этом может получаться что-то разумное. Но если эти вычисления имеют серьёзное значение, то и сам знак 0 не может быть совершенно бессмысленным. Оказывается, возможно, чтобы 2 + 1 сходным с 0 образом, всё-таки могло иметь смысл даже тогда, когда не наблюдается упоминаемый Миллем факт. В самом деле, разве кто захочет утверждать, что наблюдает тот факт, который, согласно Миллю, содержится в определении 18-значного числа, и разве кто захочет отрицать, что такой числовой знак всё же имеет смысл? Может быть, имеется в виду, что физические факты используются только для малых чисел, скажем, до 10, в то время как остальные могут составляться из них. Но если 11 можно построить из 10 и 1 лишь посредством определения, без того чтобы наблюдать соответствующую совокупность, то нет основания, по которому нельзя было бы таким же образом составить 2 из 1 и 1. Если вычисления с числом 11 не следуют из характерного для него факта, то, как получается, что вычисления с 2 должны зависеть от наблюдения определённой совокупности и её своеобразного разделения? Быть может, зададут вопрос, как может существовать арифметика, если посредством чувств мы можем различить вовсе ни одной или только три вещи. Для нашего знания арифметических предложений и их применений такое состояние, конечно, было бы чем-то сомнительным; ну а как же для их истинности? Если предложение называют эмпирическим, потому что мы должны делать наблюдения, для того чтобы нам стало известно его содержание, то слово "эмпирический" используется не в том смысле, в котором оно противоположно "a priori". Тогда высказывается психологическое утверждение, которое относится только к содержанию предложения; является ли оно истинным тем самым не рассматривается. В этом смысле все истории Мюнхгаузена также являются эмпирическими; ибо, для того чтобы их можно было выдумать, конечно, необходимо делать различные наблюдения. ЯВЛЯЮТСЯ ЛИ ЗАКОНЫ АРИФМЕТИКИ ИНДУКТИВНЫМИ ИСТИНАМИ? §9. Прежние соображения делают правдоподобным то, что числовые формулы выводимы единственно из определений отдельных чисел при помощи нескольких общих законов, что эти определения не утверждают наблюдаемые факты и не предполагают их для своей законности. Это зависит также от познания природы указанных законов. Милль24 хочет использовать для своего (упомянутого выше) доказательства формулы 5 + 2 = 7 предложение "Всё, что слагается из частей, слагается из частей этих частей". Его он принимает за характерное выражение предложения, прежде известного в форме "Суммы равных равны". Он называет его индуктивной истинной и законом природы высшего порядка. На недостаточность его экспозиции указывает то, что он совершенно не привлекает это предложение в том пункте доказательства, где оно, согласно его мнению, необходимо; всё-таки кажется, что его индуктивная истина должна заменить аксиому Лейбница: "Если подставить равное, равенство сохраняется". Однако для того чтобы арифметическую истину можно было назвать законом природы, Милль вкладывает в неё смысл, которого она не имеет. Он считает25, например, что равенство 1 = 1 может быть ложным, поскольку один фунт не всегда имеет именно тот вес, который имеет другой фунт. Но предложение 1 = 1 вовсе даже не стремится этого утверждать. Милль понимает знак + так, чтобы благодаря этому выразить отношение частей физического тела или частей кучи к целому; но не в этом смысл данного знака. 5 + 2 = 7 не означает, что если в 5 мер жидкости влить 2 меры жидкости, то получится 7 мер жидкости, но последнее есть применение первого предложения, которое допустимо только тогда, когда вследствие, скажем, химической реакции не наступает изменения объёма. Милль всегда смешивает применение, которое можно найти арифметическому предложению и которое часто бывает физическим и предполагает наблюдаемый факт, с самим чисто математическим предложением. Знак плюса может, правда, во многих применениях, по-видимому, соответствовать образованию кучи; но не в этом его значение; потому что при других применениях (если, например, заниматься подсчётом событий) о кучах, агломератах, отношении физического тела к своим частям не может быть и речи. Правда, здесь тоже можно говорить о частях; однако тогда это слово используется не в физическом или геометрическом, но в логическом смысле, как когда тираноубийство называют частью убийства вообще. Здесь имеется логическая субординация. Так и сложение, в общем, тоже не соответствует физическому отношению. Следовательно, общие законы сложения также не являются законами природы. §10. Но возможно они всё-таки могут быть индуктивными истинами. Как же за это взяться? Из каких фактов необходимо исходить, чтобы подняться к общему? Пожалуй, таковыми могут быть только числовые формулы. Этим мы, конечно, опять утрачиваем преимущества, которые приобрели посредством определения отдельных чисел, и должны найти другой способ обоснования числовых формул. Но даже если сейчас мы и не принимаем во внимание это вовсе не лёгкое сомнение, то всё равно находим почву для индукции неблагоприятной; потому что здесь отсутствует то однообразие, которое в ином случае могло бы придать этой процедуре большую надёжность. Уже Лейбниц26 на утверждение Филалета: "Различные модусы чисел могут отличаться друг от друга лишь по величине, поэтому они простые модусы, подобно модусам протяжения", мог ответить: "Это можно сказать времени и о прямой линии, но ни в коем случае не о фигурах и тем более не о числах, которые не только не отличаются друг от друга по величине, но, кроме того, и не сходны между собой; чётное число можно разделить поровну на две части, а нечётное нельзя. Три и шесть - треугольные числа, четыре и девять - квадраты, восемь - куб и т.п. Сказанное относится к числам ещё больше, чем к фигурам, так как две неравные фигуры могут быть совершенно подобны друг другу, чего нельзя никогда сказать о двух числах". Мы уже привыкли именно к тому, что числа во многих отношениях трактуются как однородные; но это происходит только постольку, поскольку мы знаем множество общих предложений, которые имеют силу для всех чисел. Здесь мы должны, однако, встать на точку зрения, с которой ещё ничего не оценивалось. В самом деле, было бы трудно найти пример для индуктивного вывода, соответствующий нашему случаю. Обычно мы часто устанавливаем предложение, что каждое место в простран

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору