Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Философия
   Книги по философии
      Фреге Готлоб. Основоположения арифметики -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  -
стве и каждая временная точка в себе и для себя аналогична любой другой. При тех же самых условиях результат должен получаться столь же хорошо в другом месте и в другое время. Здесь это не применимо, поскольку числа внепространственны и вневременны. Позиция в ряду чисел не равноценна месту в пространстве. Числа также ведут себя совершенно иначе, нежели, скажем, представители вида животных, так как числа по природе вещей имеют определённый порядок, каждое образуется собственным способом и обладает своеобразием, особенно заметным у 0, 1 и 2. Кроме того, если посредством индукции обосновывается предложение, относящееся к виду, обыкновенно уже имеется весь ряд с общими свойствами, уже единственно по определению понятия вида. Здесь же трудно найти даже единственное общее свойство, которое сперва само не доказывалось бы. Наш случай легче всего можно сравнить со следующим. Пусть замечено, что с глубиной температура в буровой скважине регулярно увеличивается, причём до сих пор встречались совершенно разные слои горных пород. Очевидно, тогда, основываясь на наблюдениях за этой скважиной, никто не сделает вывода о состоянии более глубоких слоёв, и должно оставаться открытым, будет ли регулярность распределения температуры сохранятся далее. Хотя под понятие "то, что встречается при продолжении бурения" подпадает как то, что наблюдалось до сих пор, так и то, что залегает более глубоко, здесь, однако, это мало может пригодиться. В случае чисел нам так же мало может пригодиться то, что все они подпадают под понятие "то, что получается посредством увеличения на один". Различие между двумя случаями можно найти в том, что слои лишь встречаются, но числа посредством увеличения на единицу прямо-таки создаются и определяются во всём своём существе. Последнее может означать только то, что все свойства числа (например, 8) можно вывести из способа, которым оно возникает посредством увеличения на 1. Этим, в сущности, даётся то, что свойства числа вытекают из его определения, и открывается возможность доказать общие законы чисел из одинакового для них всех способа возникновения, в то время как особые свойства отдельных чисел выводятся из особого способа, которым они образуются с помощью продолжающегося увеличения на один. Таким же образом можно делать выводы именно из того, что у земного слоя определяется уже единственно посредством глубины, на которой он встречается, т.е. из обстоятельств его расположения, не нуждаясь в индукции; но то, что этим не определяется, нельзя узнать также и из индукции. Вероятно, саму процедуру индукции можно оправдать только с помощью общих предложений арифметики, если под ней не понимать простую привычку. Последняя совершенно не обладает ручающейся за истину силой. В то время как научная процедура согласно объективным стандартам то находит обоснованной высокую вероятность в одном единственном примере, то считает не имеющими цены тысячи событий, привычка определяется числом и силой впечатлений и субъективными обстоятельствами, которые не имеют никакого права оказывать влияние на суждение. Индукция должна опираться на учение о вероятности, поскольку она может сделать предложение не более чем вероятным. Однако не видно, как это учение можно развить, не предполагая арифметических законов. §11. Лейбниц27, наоборот, считал, что необходимые истины, которые обнаруживаются только в арифметике, должны иметь принципы, доказательство которых не зависит от примеров и, следовательно, от показаний чувств, хотя никому и не приходит на ум мыслить об этом без чувств. "Вся арифметика врождена и заключается в нас потенциальным образом". То, как он понимает выражение "врождена", поясняет другое место28: "Я не могу признать также, будто всё то, что мы узнаём, не врождено. Истины о числах находятся в нас, и тем не менее мы узнаём их, либо извлекая эти истины из их источника, когда мы узнаём их путём рационального доказательства (что показывает, что они врождены), либо ...". ЯВЛЯЮТСЯ ЗАКОНЫ АРИФМЕТИКИ АПРИОРНО СИНТЕТИЧЕСКИМИ ИЛИ ЖЕ АНАЛИТИЧЕСКИМИ? §12. Если взять антитезу аналитического и синтетического, получается четыре комбинации; однако, одна из них, а именно, аналитическое a posteriori, отпадает. Если вместе с Миллем решить в пользу a posteriori, то выбора не остаётся; но нам всё ещё остаётся взвесить лишь две возможности синтетическое a priori и аналитическое. В пользу первого решает Кант. В этом случае, пожалуй, не остаётся ничего иного, как призвать чистое созерцание в качестве последнего основания познания, несмотря на то, что тут трудно сказать, является ли оно пространственным или временным, или же, кроме того, может быть каким-то ещё. Бауман29 соглашается с Кантом, хотя и на несколько ином основании. Согласно Липшицу30 предложения, которые утверждают независимость чисел от способа вычисления, также вытекают из внутреннего созерцания. Ханкель31 основывает учение о действительных числах на трёх принципах, которым он приписывает характеристику notiones communes32: "Посредством экспликации они становятся совершенно очевидными, имеющими силу для всего обладающего величиной согласно чистому созерцанию величины и могут, без утраты своей характеристики, быть преобразованы в определения тем, что говорят: Под сложением величин понимается операция, удовлетворяющая этим предложениям". В последнем утверждении содержится неясность. Пожалуй, определение можно дать, но оно не может составить замены этим принципам, поскольку при применении речь всегда бы шла о том, есть ли числовые величины и является ли то, что мы имеем обыкновение называть сложением, сложением в смысле данного определения? И при ответе необходимо уже знать эти предложения о числах. Далее, неприязнь вызывает выражение "чистое созерцание величины". Если задуматься над всем тем, что называется величинами (числа, протяжённости, площади, объёмы, угол, кривизна, массы, скорости, силы, освещённость, электрическое напряжение и т.д.), то, пожалуй, понятно, как их можно подчинить понятию величины; но выражение "созерцание величины" (и уж совсем "чистое созерцание величины) нельзя признать соответствующим. Раз уж я не могу согласиться с созерцанием 1000000, ещё меньше я могу согласиться с созерцанием числа вообще или, вовсе, величины вообще. На внутреннее созерцание легко сослаться, когда нельзя указать на другое основание. Но всё же при этом не нужно совершенно терять из виду смысл слова "созерцание". Кант определяет в Логике (ed.Hartenstein, VIII, S.88): "Созерцание есть единичное представление (repraesentatio singularis); понятие есть общее (repraesentatio per notas communes) или рефлективное представление (repraesentatio discursiva)"33. Здесь в выражение вовсе не входит отношение к чувственности, которое, однако, примысливается в Трансцендентальной эстетике и без которого созерцание не может служить для априорно синтетических суждений в качестве принципа познания. В Критике чистого разума (ed.Hartenstein III, S.55) обозначено: "Всякое мышление должно ... иметь отношение к созерцаниям, стало быть, у нас - к чувственности, потому что ни один предмет не может быть нам дан иным способом"34. Смысл нашего слова в Логике, таким образом, шире, чем в Трансцендентальной эстетике. В логическом смысле можно, пожалуй, назвать 1000000 созерцанием; поскольку оно не является общим понятием. Но взятое в этом смысле, созерцание не может служить основанием арифметических законов. §13. В общем, было бы хорошо, не переоценивать родство с геометрией. Против этого я уже приводил цитату из Лейбница. Геометрическая точка, рассмотренная сама по себе, совершенно не отличается от какой-нибудь другой; то же самое имеет силу для прямых и плоскостей. Они различаются, лишь когда несколько точек, прямых или плоскостей схвачены в созерцании одновременно. Если в геометрии общие предложения приобретаются созерцанием, то отсюда ясно, что созерцаемые точки, прямые и плоскости собственно вовсе не являются особенными и поэтому могут считаться представителями всего своего рода. У чисел дело обстоит по иному; каждое из них имеет свои особенности. О том, каким образом определённое число может представлять другие, и где предъявляет свои права его своеобразие, нельзя сказать безоговорочно. §14. Сравнение истин при ссылке на область, где они господствуют, также говорит против эмпирической и синтетической природы арифметических законов. Предложения опыта имеют силу для физической или психологической действительности, геометрические истины господствуют в области пространственно созерцаемого, неважно будет ли оно только действительным или же продуктом силы воображения. Самый сумасшедший лихорадочный бред, самые смелые творения сказаний и поэтов, где животные говорят, где светила могут спокойно останавливаться, где из камня получается человек, а из человека дерево, где учат тому, как самого себя вытащить из болота за собственный чуб, всё ещё, поскольку остаются наглядными, связаны с аксиомами геометрии. Понятийное мышление может освободиться от этого только определённым способом, если, скажем, принять четырёхмерное пространство или положительное искривление. Такое рассмотрение вовсе не бесполезно, оно полностью покидает поле созерцания. Если же при этом последнее призывается на помощь, то оно всё-таки всегда является созерцанием евклидова пространства, единственного пространства, образом которого мы обладаем. Только тогда созерцание не таково, каково оно есть, но символизирует нечто иное; например, прямой или плоскостью называют то, что всё-таки созерцается как искривлённое. Для понятийного же мышления можно принять противоположное той или иной геометрической аксиоме, без того чтобы, если следствия выводятся из таких конфликтующих с созерцанием предпосылок, запутаться в противоречиях с самим собой. Эта возможность показывает, что геометрические аксиомы независимы друг от друга и от первичных логических законов, а являются синтетическими. Можно ли сказать то же самое об основоположениях науки о числах? Не смешается ли всё, если захотелось бы отрицать одну из них? Было ли бы тогда ещё возможно мышление? Не лежит ли основание арифметики глубже, нежели основа всего опытного знания, даже глубже, чем основание геометрии? Арифметические истины господствуют над областью исчислимого. Это основание является всеобъемлющем; так как ему принадлежит не только действительное, не только созерцаемое, но и всё мыслимое. Разве не должны тогда законы чисел находится в теснейшей связи с законами мысли? §15. Нетрудно предвидеть, что изречения Лейбница можно истолковать в пользу аналитической природы законов чисел, ведь для него a priori совпадает с аналитическим. Так, он говорит35, что алгебра заимствует свои преимущества у более высокого искусства, а именно, подлинной логики. В другом месте36 он сравнивает необходимые и случайные истины с соизмеримыми и несоизмеримыми величинами и подразумевает, что в случае необходимых истин возможно доказательство или сведение к тождествам. Эти мнения всё же теряют вес вследствие того, что Лейбниц склонен считать все истины доказуемыми37: "... Каждая истина извлекает своё априорное доказательство из понятия терминов, хотя не всегда в наших силах прийти к этому анализу". Правда, сравнение с соизмеримостью и несоизмеримостью опять устанавливает непреодолимый, по крайней мере, для нас, барьер между случайными и необходимыми истинами. Весьма решительно в пользу аналитической природы законов чисел высказывается У.Стенли Джевонс38: "Число есть только логическое различение и алгебра есть в высшей степени развитая логика". §16. Но и эта точка зрения также имеет свои затруднения. Может ли высоко возвышающееся, разветвлённое и всё же постоянно растущее древо науки о числах укоренятся в голых тождествах? И каким образом пустые формы логики приходят к тому, что из них получается такое содержание? Милль считает39: "Учение о том, что мы можем открывать факты и разоблачать сокровенные процессы в природе посредством искусного пользования словами, до такой степени противна здравому смыслу, что для того, чтобы поверить ему, надо сделать некоторые успехи в философии". Верно, если бы при искусных манипуляциях не мыслили. Здесь Милль выступает против формализма, который едва ли кто-нибудь защищает. Те, кто использует слова или математические знаки, претендуют на то, что они нечто обозначают, и никто не ждёт, что из пустых знаков вытекает нечто, наполненное смыслом. Однако возможно, что математик осуществляет длиннейшие вычисления без того, чтобы понимать под своими знаками нечто чувственно зримое, созерцаемое. Из-за этого знаки всё же не являются бессмысленными; от них самих всё же отличают их содержание, даже если, быть может, оно схватываемо только посредством знаков. Известно, что для одного и того же можно установить другие знаки. Нужно знать, как логически обращаться с символизированным в знаках содержанием, и как должен совершаться переход к явлениям, когда хотят применения в физике. Однако в таком применении нельзя видеть собственный смысл предложений. При этом всегда пропадает большая часть общности, и привходит нечто особенное, что при ином применении заменяется на другое. §17. Вопреки всяческому умалению дедукции всё же нельзя отрицать, что законов, обоснованных посредством индукции, недостаточно. Из них должны выводится новые предложения, которые ни в одном из них в отдельности не содержатся. То, что они уже определённым способом находятся в них всех вместе взятых, не освобождает от работы вытащить их оттуда и установить сами по себе. С этим открывается следующая возможность. Вместо того чтобы привязывать ряд выводов непосредственно к факту, можно, оставляя последний вопрос открытым, адаптировать его содержание в качестве условия. Благодаря тому, что все факты таким образом заменяются в ряду мыслей на условия, вывод получают в такой форме, что результат становится зависимым от ряда условий. Такая истина была бы обоснована посредством одного мышления или, по выражению Милля, посредством искусного пользования словами. Нет ничего невозможного в том, чтобы законы чисел относились к такой разновидности. Тогда, несмотря на то, что они не обязательно открывались бы посредством одного мышления, они были бы аналитическими суждениями; ибо здесь рассматривается не способ поиска, но разновидность оснований доказательства; или, как говорит Лейбниц40, "Ведь здесь речь идёт не об истории наших открытий, которая различна у разных людей, но о естественной связи и естественном порядке истин, который всегда одинаков". Тогда в конце наблюдение решило бы, выполнено ли условие, содержащееся в обоснованных таким образом законах. В конце концов, так попадают именно туда, куда пришли бы с помощью непосредственной привязки ряда выводов к наблюдаемым фактам. Однако указанная здесь разновидность образа действия во многих случаях предпочтительнее, поскольку она приводит к общему предложению, которое не обязательно применимо только к непосредственно имеющимся в наличие фактам. Тогда истины арифметики относились бы к истинам логики подобно тому, как теоремы относятся к аксиомам геометрии. Последние конденсированно содержали бы в себе весь ряд выводов для будущего употребления, и их польза состояла бы в том, что больше не нужно было бы делать выводы порознь, но можно было бы сразу же выразить результат всего ряда41. Тогда, ввиду сильного развития арифметических теорий и их многократного применения, не удержалось бы широко распространённое пренебрежение аналитическими суждениями и сказка о непродуктивности чистой логики. Если же не здесь впервые выраженную точку зрения можно провести в частностях так строго, чтобы не оставалось ни малейшего сомнения, то этот результат, как мне кажется, был бы вполне значим. II. МНЕНИЯ ОТДЕЛЬНЫХ АВТОРОВ О ПОНЯТИИ ЧИСЛА §18. Обращаясь к первичным предметам арифметики, мы, между тем, отличаем отдельные числа 3, 4 и т.д. от общего понятия числа. Итак, мы уже решили, что отдельные числа лучше всего выводить по способу Лейбница, Милля, Г.Грасмана и других из однёрки и увеличения на один, и что это объяснение, однако, остаётся неполным, поскольку не объяснены однёрка и увеличение на один. Чтобы из этих определений вывести числовые формулы, как мы видели, нужны общие предложения. Такие законы, как раз благодаря их общности, можно вывести не из определений отдельных чисел, но только из общего понятия числа. Это последнее мы сейчас подвергнем более тщательному рассмотрению. При этом также предполагается, что необходимо обсудить однёрку и увеличение на один, а, стало быть, определения отдельных чисел также ждут дополнения. §19. Здесь мне сразу же хотелось бы возразить на попытку, когда число понимают геометрически, как числовую пропорцию длин и площадей, очевидно, полагая облегчить многократные применения арифметики к геометрии тем, что их начала приравниваются в самом тесном отношении. Ньютон42 предлагает понимать под числом не столько множество единиц, сколько отвлечённое отношение любой величины к другой величине того же самого вида, которая берётся за единицу. Можно признать, что так соответствующим образом описывается число в широком смысле, к которому принадлежат также дроби и иррациональные числа; при этом всё же предполагаются понятия величины и отношения величин. Сообразно с этим кажется, что объяснение числа в более узком смысле (кардинального числа) излишним бы не было, поскольку Евклид, чтобы определить равенство двух пропорций между длинами, использует понятие равнократности, а равнократность вновь выводит на равночисленность. Однако может быть и так, что равенство пропорций между длинами независимо от определимости понятия числа. Тогда сверх того всё-таки остаётся сомнительным, в каком отношении определённое таким геометрическим образом число находится к числу обычной жизни. Последнее тогда совершенно расстаётся с наукой. И всё же от арифметики, пожалуй, можно требовать, чтобы она необходимо предполагала точку соприкосновения с каждым применением числа, даже если само применение и не является её делом. Даже обыкновенный счёт должен находить основание своего метода в науке. А тогда встаёт вопрос, обходится ли сама арифметика геометрическим понятием числа, если под числом мыслятся корни уравнения, число, меньшее и предшествующее некоторому числу, или нечто подобное. Зато число, отвечающее на вопрос "сколько?", может определять также, сколько единиц содержится в некоторой протяжённости. Вычисления с негативными, дробными, иррациональными числами можно свести к вычислениям с действительными числами. Но, быть может, Ньютон под величинами, через отношения которых определялось число, хочет понимать не только геометрические величины, но также и множества. Тогда для нашей цели объяснение всё-таки непригодно, поскольку из выражений "число посредством которого определяется множество" и "отношение множества к единице множественности" последнее информирует не лучше, чем первое. §20. Первый вопрос был бы теперь о том, определимо ли число. Ханкель высказывается против: "То, что подразумевается, когда объект мыслят или полагают 1 раз, 2 раза, 3 раза ..., определить нельзя, ввиду простоты понятия "полагать""43. Всё-таки дело здесь не столько в "полагать", сколько в 1 раз, 2 раза, 3 раза. Если бы это можно было определить, то неопределимость "полагать" нас мало бы тревожила. Лейбниц склонен рассматривать число как адекватную идею (или, по крайней мере, как идею, близкую адекватной), т.е. такую идею, которая настолько ясна, что всё входящее в неё вновь является ясным. В целом, если более склоняются к тому, чтобы считать число неопределяемым, то, пожалуй, это зависит скорее оттого, что на неудачу обрекается попытку, нежели от встречных доводов, заимствованных из обстоятельств самого дела. ЯВЛЯЕТСЯ ЛИ ЧИСЛО СВОЙСТВОМ ВНЕШНИХ ВЕЩЕЙ? §21. Нам, по крайней мере, следует попытаться указать для числа его место среди наших понятий! В языке числа большей частью проявляются в форме прилагательного и в атрибутивной связи, наподобие слов твёрдый, тяжёлый, красный, обозначающих

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору